Created
April 17, 2020 23:53
-
-
Save luispedro/bbacfa6928dd3f142aba64bfa4bd3334 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pymc3 as pm | |
from scipy import stats | |
import numpy as np | |
NR_TESTS = 3330 | |
POSITIVES = 50 | |
PRE_NEG = 401 | |
PRE_NEG_POS = 2 | |
PRE_PLUS = 37+75+85 | |
PRE_PLUS_POS = 25 + 75 + 78 | |
print("# Pre-Bayesian") | |
print("{}\t{}".format("Spec","p-value")) | |
for sp in np.linspace(.983, .995, 10): | |
print("{}\t{}".format(sp, 1-stats.binom(NR_TESTS, 1 - sp).cdf(POSITIVES))) | |
print("\n# Semi-Bayesian") | |
sp_dist = stats.beta(PRE_NEG - PRE_NEG_POS + 1, PRE_NEG_POS + 1) | |
cs = [] | |
for _ in range(10_000): | |
sp = sp_dist.rvs() | |
cs.append( | |
stats.binom(NR_TESTS, 1 - sp).rvs()) | |
cs = np.array(cs) | |
print("Empirical p-value for null: {}".format((cs >= 50).mean())) | |
print("\n# The full Bayesian") | |
with pm.Model() as model: | |
# Beta(1,1) priors for all the fractions | |
sp = pm.Beta('sp', 1,1) | |
sn = pm.Beta('sn', 1,1) | |
prev = pm.Beta('prev', 1, 1) | |
# These were the test evaluations | |
pm.Binomial('pre', PRE_NEG, 1 - sp, observed=PRE_NEG_POS) | |
pm.Binomial('pre_sn', PRE_PLUS, sn, observed=PRE_PLUS_POS) | |
# Total positives in the test set: | |
pos = pm.Binomial('pos', NR_TESTS, prev) | |
# Some are going to be true positives (at most POSITIVES): | |
tp = pm.Bound(pm.Binomial, upper=POSITIVES)('tp', pos, sn) | |
# We observe the sum of fp + tp, but it's not possible to directly express | |
# it that way in pymc, but it is possible to express it in this equivalent | |
# way: | |
p = pm.Binomial('fp', NR_TESTS - pos, 1 - sp, observed=(POSITIVES - tp)) | |
t = pm.sample(10_000) | |
print("P(pos == 0): {}".format(np.mean(t.pos==0))) | |
t_prev = t.prev.copy() | |
for name, arr in [ | |
('prevalence', t.prev), | |
('positives', t.pos)]: | |
arr = arr.copy() | |
arr.sort() | |
print("Credible interval for {}: {} -- {}".format( | |
name, | |
arr[len(arr)//20], | |
arr[-len(arr)//20])) | |
# OUTPUT | |
# # Pre-Bayesian | |
# Spec p-value | |
# 0.983 0.7916561584607545 | |
# 0.9843333333333333 0.5837802613783531 | |
# 0.9856666666666667 0.3359586144295388 | |
# 0.987 0.13589251160874583 | |
# 0.9883333333333333 0.03419905470535767 | |
# 0.9896666666666667 0.004607969061608097 | |
# 0.991 0.000272379260707889 | |
# 0.9923333333333333 5.3119956933134205e-06 | |
# 0.9936666666666667 2.1987185627736494e-08 | |
# 0.995 9.120371124993198e-12 | |
# | |
# # Semi-Bayesian | |
# Empirical p-value for null: 0.0732 | |
# | |
# # The full Bayesian | |
# P(pos == 0): 0.0 | |
# Credible interval for prevalence: 0.004510854444494588 -- 0.016812474319518215 | |
# Credible interval for positives: 15 -- 51 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment