I hereby claim:
-
I am luispedro on github.
-
I am luispedro (https://keybase.io/luispedro) on keybase.
-
I have a public key ASBto9ey42rmyXUsEJflex23RWhAlqOiCzmCroSke7XYigo
%matplotlib qt | |
from scipy.stats import pearsonr,spearmanr | |
from scipy import stats | |
from matplotlib import pyplot as plt | |
import pandas as pd | |
import numpy as np | |
import seaborn as sns | |
data = pd.read_excel('./062109-1.xlsx', sheet_name=2) | |
data = data[data.columns[:12]] |
import pandas as pd | |
TARGET = 5_000_000 | |
TARGET_RATE = TARGET / 366 | |
data = [ | |
('January', 31, 271_347), | |
('February', 29, 321_084), | |
('March', 31, 424_562), | |
('April', 30, 412_478), | |
('May', 31, 442_295), |
import re | |
import cv2 | |
import subprocess | |
pat = re.compile(r'^WIFI:S:([^;]+);T:WPA;P:([^;]+);;') | |
detect = cv2.QRCodeDetector() | |
cv2.namedWindow("preview") | |
vc = cv2.VideoCapture(0) | |
rval, frame = vc.read() |
import COVID19Py | |
covid19 = COVID19Py.COVID19() | |
locations = covid19.getLocations(timelines=True) | |
UK = '2020-12-03T00:00:00Z' | |
EU = set(['AT', 'BE', 'BG', 'HR', 'CY', 'CZ', 'DK', 'EE', 'FI', 'FR', 'DE', 'GR', 'HU', 'IE', 'IT', 'LV', 'LU', 'MT', 'NL', 'PL', 'RO', 'SK', 'SI', 'ES', 'SE']) | |
tot = 0 | |
for loc in locations: | |
if loc['country_code'] in EU: | |
tim = loc['timelines']['deaths']['timeline'] |
I hereby claim:
I am luispedro on github.
I am luispedro (https://keybase.io/luispedro) on keybase.
I have a public key ASBto9ey42rmyXUsEJflex23RWhAlqOiCzmCroSke7XYigo
# %matplotlib qt | |
import numpy as np | |
import seaborn as sns | |
from matplotlib import pyplot as plt | |
from matplotlib import style | |
style.use('default') | |
TOTAL_POP = 100_000 | |
MAX_ITERS = 100_000 | |
rho = 0.5 |
import pymc3 as pm | |
from scipy import stats | |
import numpy as np | |
NR_TESTS = 3330 | |
POSITIVES = 50 | |
PRE_NEG = 401 | |
PRE_NEG_POS = 2 | |
PRE_PLUS = 37+75+85 |
# for Emacs: -*- coding: utf-8 -*- | |
# Originally found on the internet. Not my work | |
include "%L" | |
# def emit(keys, codepoint, word): | |
# print ('<Multi_key> %s <period>\t: "%s"\tU%04X\t\t# CIRCLED DIGIT %s' % | |
# (keys, unichr(codepoint), codepoint, word)).encode('utf8') |
import numpy as np | |
# FROM | |
# http://worldpopulationreview.com/countries/china-population/ | |
pyramid0china = np.array( | |
[16446861., 16821572., 17097250., 17284418., 17390933., 17423080., | |
17403550., 17341743., 17247061., 17129365., 16998517., 16861620., | |
16727156., 16605907., 16498945., 16404588., 16387661., 16480191., |
Tiny animal-like things living in and around | |
people do many things. Some of these animal-like | |
things are good for us, others are bad, and, for | |
many, we do not know anything about them. We want | |
to know more. | |
How these small animal-like things look and act | |
comes from what is written inside them, which we | |
can only read if it is broken up in pieces. We use | |
computers to try to put these pieces together and |