Last active
January 13, 2025 12:16
-
-
Save karpathy/00103b0037c5aaea32fe1da1af553355 to your computer and use it in GitHub Desktop.
hacky stablediffusion code for generating videos
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
stable diffusion dreaming | |
creates hypnotic moving videos by smoothly walking randomly through the sample space | |
example way to run this script: | |
$ python stablediffusionwalk.py --prompt "blueberry spaghetti" --name blueberry | |
to stitch together the images, e.g.: | |
$ ffmpeg -r 10 -f image2 -s 512x512 -i blueberry/frame%06d.jpg -vcodec libx264 -crf 10 -pix_fmt yuv420p blueberry.mp4 | |
nice slerp def from @xsteenbrugge ty | |
you have to have access to stablediffusion checkpoints from https://huggingface.co/CompVis | |
and install all the other dependencies (e.g. diffusers library) | |
""" | |
import os | |
import inspect | |
import fire | |
from diffusers import StableDiffusionPipeline | |
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler | |
from time import time | |
from PIL import Image | |
from einops import rearrange | |
import numpy as np | |
import torch | |
from torch import autocast | |
from torchvision.utils import make_grid | |
# ----------------------------------------------------------------------------- | |
@torch.no_grad() | |
def diffuse( | |
pipe, | |
cond_embeddings, # text conditioning, should be (1, 77, 768) | |
cond_latents, # image conditioning, should be (1, 4, 64, 64) | |
num_inference_steps, | |
guidance_scale, | |
eta, | |
): | |
torch_device = cond_latents.get_device() | |
# classifier guidance: add the unconditional embedding | |
max_length = cond_embeddings.shape[1] # 77 | |
uncond_input = pipe.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt") | |
uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(torch_device))[0] | |
text_embeddings = torch.cat([uncond_embeddings, cond_embeddings]) | |
# if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas | |
if isinstance(pipe.scheduler, LMSDiscreteScheduler): | |
cond_latents = cond_latents * pipe.scheduler.sigmas[0] | |
# init the scheduler | |
accepts_offset = "offset" in set(inspect.signature(pipe.scheduler.set_timesteps).parameters.keys()) | |
extra_set_kwargs = {} | |
if accepts_offset: | |
extra_set_kwargs["offset"] = 1 | |
pipe.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(pipe.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# diffuse! | |
for i, t in enumerate(pipe.scheduler.timesteps): | |
# expand the latents for classifier free guidance | |
latent_model_input = torch.cat([cond_latents] * 2) | |
if isinstance(pipe.scheduler, LMSDiscreteScheduler): | |
sigma = pipe.scheduler.sigmas[i] | |
latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5) | |
# predict the noise residual | |
noise_pred = pipe.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] | |
# cfg | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
if isinstance(pipe.scheduler, LMSDiscreteScheduler): | |
cond_latents = pipe.scheduler.step(noise_pred, i, cond_latents, **extra_step_kwargs)["prev_sample"] | |
else: | |
cond_latents = pipe.scheduler.step(noise_pred, t, cond_latents, **extra_step_kwargs)["prev_sample"] | |
# scale and decode the image latents with vae | |
cond_latents = 1 / 0.18215 * cond_latents | |
image = pipe.vae.decode(cond_latents) | |
# generate output numpy image as uint8 | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).numpy() | |
image = (image[0] * 255).astype(np.uint8) | |
return image | |
def slerp(t, v0, v1, DOT_THRESHOLD=0.9995): | |
""" helper function to spherically interpolate two arrays v1 v2 """ | |
if not isinstance(v0, np.ndarray): | |
inputs_are_torch = True | |
input_device = v0.device | |
v0 = v0.cpu().numpy() | |
v1 = v1.cpu().numpy() | |
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1))) | |
if np.abs(dot) > DOT_THRESHOLD: | |
v2 = (1 - t) * v0 + t * v1 | |
else: | |
theta_0 = np.arccos(dot) | |
sin_theta_0 = np.sin(theta_0) | |
theta_t = theta_0 * t | |
sin_theta_t = np.sin(theta_t) | |
s0 = np.sin(theta_0 - theta_t) / sin_theta_0 | |
s1 = sin_theta_t / sin_theta_0 | |
v2 = s0 * v0 + s1 * v1 | |
if inputs_are_torch: | |
v2 = torch.from_numpy(v2).to(input_device) | |
return v2 | |
def run( | |
# -------------------------------------- | |
# args you probably want to change | |
prompt = "blueberry spaghetti", # prompt to dream about | |
gpu = 0, # id of the gpu to run on | |
name = 'blueberry', # name of this project, for the output directory | |
rootdir = '/home/ubuntu/dreams', | |
num_steps = 200, # number of steps between each pair of sampled points | |
max_frames = 10000, # number of frames to write and then exit the script | |
num_inference_steps = 50, # more (e.g. 100, 200 etc) can create slightly better images | |
guidance_scale = 7.5, # can depend on the prompt. usually somewhere between 3-10 is good | |
seed = 1337, | |
# -------------------------------------- | |
# args you probably don't want to change | |
quality = 90, # for jpeg compression of the output images | |
eta = 0.0, | |
width = 512, | |
height = 512, | |
weights_path = "/home/ubuntu/stable-diffusion-v1-3-diffusers", | |
# -------------------------------------- | |
): | |
assert torch.cuda.is_available() | |
assert height % 8 == 0 and width % 8 == 0 | |
torch.manual_seed(seed) | |
torch_device = f"cuda:{gpu}" | |
# init the output dir | |
outdir = os.path.join(rootdir, name) | |
os.makedirs(outdir, exist_ok=True) | |
# init all of the models and move them to a given GPU | |
lms = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear") | |
pipe = StableDiffusionPipeline.from_pretrained(weights_path, scheduler=lms, use_auth_token=True) | |
pipe.unet.to(torch_device) | |
pipe.vae.to(torch_device) | |
pipe.text_encoder.to(torch_device) | |
# get the conditional text embeddings based on the prompt | |
text_input = pipe.tokenizer(prompt, padding="max_length", max_length=pipe.tokenizer.model_max_length, truncation=True, return_tensors="pt") | |
cond_embeddings = pipe.text_encoder(text_input.input_ids.to(torch_device))[0] # shape [1, 77, 768] | |
# sample a source | |
init1 = torch.randn((1, pipe.unet.in_channels, height // 8, width // 8), device=torch_device) | |
# iterate the loop | |
frame_index = 0 | |
while frame_index < max_frames: | |
# sample the destination | |
init2 = torch.randn((1, pipe.unet.in_channels, height // 8, width // 8), device=torch_device) | |
for i, t in enumerate(np.linspace(0, 1, num_steps)): | |
init = slerp(float(t), init1, init2) | |
print("dreaming... ", frame_index) | |
with autocast("cuda"): | |
image = diffuse(pipe, cond_embeddings, init, num_inference_steps, guidance_scale, eta) | |
im = Image.fromarray(image) | |
outpath = os.path.join(outdir, 'frame%06d.jpg' % frame_index) | |
im.save(outpath, quality=quality) | |
frame_index += 1 | |
init1 = init2 | |
if __name__ == '__main__': | |
fire.Fire(run) |
For faster inference, we can wrap the call to
diffuse
intorch.autocast
so the inference will run in half-precision. For examplefrom torch import autocast with autocast("cuda"): image = diffuse(text_embeddings, init, guidance_scale=10.0)
yes i dropped this accidentally, added, ty
Interestingly enough, huggingface discourages the use of autocast!
Somehow got this error: "ValueError: only one element tensors can be converted to Python scalars"
Same. Did you manage to solve it?
I am new in this project. would you like to help me. I am facing error in this code of line@
image = diffuse(pipe, cond_embeddings, init, num_inference_steps, guidance_scale, eta)
cond_embeddings out of index 51. eta variable. what should I need to do to overcome this issue
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I've got CUDA installed now and past all the previous errors I was getting with the script, but now I'm getting "CUDA out of memory" error. I only have 6GB of VRAM. I tried lowering the higher and width parameters but it didn't help. Any suggestions for getting this to run?
Edit: running a simple script to generate a single image I also get a memory error unless I add: , torch_dtype=torch.float16
Adding torch_dtype=torch.float16 to this script I now get a new error on this line
cond_latents = pipe.scheduler.step(noise_pred, i, cond_latents, **extra_step_kwargs)["prev_sample"]
only one element tensors can be converted to Python scalars
Edit 2: Got it working by using gordicaleksa's recommendation for a simplified version above! Thanks!
One minor change for it to work for me, ["sample"][0] was invalid. I changed image variable name to pipelineOutput and then the save line changed to: pipelineOutput.images[0].save(outpath)