Skip to content

Instantly share code, notes, and snippets.

View hiraksarkar's full-sized avatar

Hirak Sarkar hiraksarkar

View GitHub Profile
@hiraksarkar
hiraksarkar / .nextflow.log
Created November 18, 2024 14:02
netflow log for running baysor
Nov-17 09:39:19.048 [main] DEBUG nextflow.cli.Launcher - $> nextflow run maximilian-heeg/xenium-segmentation -r v0.3 --xenium_path /n/fs/ragr-data/users/hirak/10x_colorectal/xenium
Nov-17 09:39:19.289 [main] DEBUG nextflow.cli.CmdRun - N E X T F L O W ~ version 24.10.0
Nov-17 09:39:19.473 [main] DEBUG nextflow.plugin.PluginsFacade - Setting up plugin manager > mode=prod; embedded=false; plugins-dir=/n/fs/ragr-data/users/hirak/.nextflow/plugins; core-plugins: [email protected],[email protected],[email protected],[email protected],[email protected],[email protected],[email protected],[email protected]
Nov-17 09:39:19.493 [main] INFO o.pf4j.DefaultPluginStatusProvider - Enabled plugins: []
Nov-17 09:39:19.494 [main] INFO o.pf4j.DefaultPluginStatusProvider - Disabled plugins: []
Nov-17 09:39:19.497 [main] INFO org.pf4j.DefaultPluginManager - PF4J version 3.12.0 in 'deployment' mode
Nov-17 09:39:19.521 [main] INFO org.pf4j.AbstractPluginManager - No plugins
Nov-17 09:39:19.720 [main] DEBUG nextflow.scm.ProviderConfig
@hiraksarkar
hiraksarkar / ggdump_example.R
Created March 5, 2024 15:29
ggdump example
library(ggplot2)
library(dplyr)
library(ggbump)
tmp.subset = lr_df_merged %>% filter(ligand %in% c('WNT9A','ARTN', 'ANGPTL2') )
tmp.subset = tmp.subset |> arrange(ligand,desc(copula_coeff))
to_nodes = distinct(tmp.subset, receptor) |> mutate(to_y = row_number())
num_senders = (distinct(tmp.subset, ligand) %>% dim)[[1]]
from_nodes = distinct(tmp.subset, ligand) |> mutate(from_y = round(dim(to_nodes)[[1]])/(num_senders+1) + row_number()-1+0.5)
@hiraksarkar
hiraksarkar / ML_gude.md
Last active December 12, 2023 17:29
ML guided tour

Step 0

  • MV Gaussian link
  • Math4ML video playlist
  • Deep Learning foundation and concept book Chapter 1-3
  • GLM theory link

Regression and Statistics

The main proofs are to be read from the following order

@hiraksarkar
hiraksarkar / deeplearning_guide.md
Created December 12, 2023 17:03
Deep Learning Guided Tour

Given the two recent books are out the best is to use them iteratively. I am not gonna add the book by Murphy as I find it not to be self sufficient but rather regard it as a dictionary. Main books

  • Understanding deep learning by Prince book and notebook
  • Deep Learning foundation and concept book

Murphy's book for reference

  • Probabilistic Machine Learning: Advanced Topics book
@hiraksarkar
hiraksarkar / regression_guided_tour.md
Last active December 12, 2023 17:03
Regression book tour with proofs and code

The main proofs are to be read from the following order -- Proofs are given here https://www.statlect.com/fundamentals-of-statistics/ It should be accompanied by the econometrics lecture given here and here

These can be accompanied by the following books

  • Foundations of Statistics for Data Scientists R and Python by Agresti and Kateri
  • Introductory Econometrics: A Modern Approach by Woodridge

For algorithmic treatment that talks about efficient mechanisms to optimize consult

@hiraksarkar
hiraksarkar / install_infercnv.sh
Created September 14, 2023 04:50
Install infercnv in conda
mamba create -n r43
mamba activate r43
mamba install r-essentials=4.3
mamba install r-rjags
export PKG_CONFIG_PATH=/home/user/miniconda3/envs/r43/lib/pkgconfig/:$PKG_CONFIG_PATH
# start R
R
# Install R package
@hiraksarkar
hiraksarkar / R_installation_instruction.md
Last active January 21, 2024 21:13
R_installation_instruction within conda

Basic

Installing R packages is painful, but conda environment solved a lot of problems. Basically, if you install your own R in conda, and the later R command install.packages() will automatically install the packages in the environment; in addition, conda has many system libraries too for getting away from requiring sudo permissions.

After creating an empty conda environment, you can install a specific version (say 4.2) of R by conda install -c conda-forge r-essentials=4.2. If you are not sure whether that version exists in conda, you can do conda search r-essentials. Using your own R in the conda environment, you can do the normal R installation commands.

Some R packages search system libraries by pkg-config. After you install the required libraries through conda, you can check whether your PKG_CONFIG_PATH includes /envs//lib/pkgconfig, and set the path properly.

#!/bin/bash
#SBATCH --mincpus 32
#SBATCH --mem 100G
#SBATCH --time 6-23:59:00
#SBATCH --job-name jupyterlab
#SBATCH --gres=gpu:1
#SBATCH --mail-type=begin # send email when job begins
#SBATCH --mail-type=end # send email when job ends
#SBATCH [email protected]
#SBATCH --output jupyter_logs/jupyter-notebook-%J.log
@hiraksarkar
hiraksarkar / della_princeton_jupyter_slurm.sh
Created September 9, 2023 16:54
della slurm jupyter job submission
#!/bin/bash
#SBATCH --mincpus 16
#SBATCH --mem 64G
#SBATCH --time 5:00:00
#SBATCH --job-name mendel
#SBATCH --mail-type=begin # send email when job begins
#SBATCH --mail-type=end # send email when job ends
#SBATCH [email protected]
#SBATCH --output jupyter_logs/jupyter-notebook-%J.log
# get tunneling info
#!/bin/bash
## This gist contains instructions about cuda v11.2 and cudnn8.1 installation in Ubuntu 20.04 for Pytorch 1.8 & Tensorflow 2.7.0
### steps ####
# verify the system has a cuda-capable gpu
# download and install the nvidia cuda toolkit and cudnn
# setup environmental variables
# verify the installation
###