Skip to content

Instantly share code, notes, and snippets.

@DmitrySoshnikov
Last active March 27, 2024 07:24
Show Gist options
  • Save DmitrySoshnikov/924ceefb1784b30c5ca6 to your computer and use it in GitHub Desktop.
Save DmitrySoshnikov/924ceefb1784b30c5ca6 to your computer and use it in GitHub Desktop.
LL(1) Parser. Parsing table, part 1: First and Follow sets.
/**
* LL(1) parser. Building parsing table, part 1: First and Follow sets.
*
* NOTICE: see full implementation in the Syntax tool, here:
* https://github.com/DmitrySoshnikov/syntax/blob/master/src/sets-generator.js
*
* by Dmitry Soshnikov <[email protected]>
* MIT Style License
*
* An LL(1)-parser is a top-down, fast predictive non-recursive parser,
* which uses a state-machine parsing table instead of recursive calls
* to productions as in a recursive descent parser.
*
* We described the work of such a parser in:
* https://gist.github.com/DmitrySoshnikov/29f7a9425cdab69ea68f
*
* There we used manually pre-built parsing table. In this diff we implement
* an automatic solution for generating a parsing table, and consider the
* first part of it: building First and Follow sets.
*
* First and Follow sets are used to determine which next production to use
* if we have symbol `A` on the stack, and symbol `a` in the buffer.
*
* First sets:
*
* First sets are everything that stands in the first position in a derivation.
* If we have a production `A -> aB`, then the symbol `a` is in the first set
* of `A`, and whenever we have symbol `A` on the stack, and symbol `a` in
* the buffer, we should use `A -> aB` production. If instead we have a
* non-terminal on the right hand side, like e.g. in `A -> BC`, then in order
* to calculate first set of `A`, we should calculate first set of `BC`, and
* then merge it to `A`.
*
* Follow sets:
*
* Follow sets are used when a symbol can be `ε` ("empty" symbol known as
* epsilon). In a productions like: `A -> bXa`, if `X` can be `ε`, then it'll
* be eliminated, and we still will be able to derive `a` which follows `X`.
* So we say that `a` is in follow set of `X`.
*
* These are the basic rules. We'll cover all the details in the implementation
* below.
*/
// Special "empty" symbol.
var EPSILON = "ε";
var firstSets = {};
var followSets = {};
/**
* Rules for First Sets
*
* - If X is a terminal then First(X) is just X!
* - If there is a Production X → ε then add ε to first(X)
* - If there is a Production X → Y1Y2..Yk then add first(Y1Y2..Yk) to first(X)
* - First(Y1Y2..Yk) is either
* - First(Y1) (if First(Y1) doesn't contain ε)
* - OR (if First(Y1) does contain ε) then First (Y1Y2..Yk) is everything
* in First(Y1) <except for ε > as well as everything in First(Y2..Yk)
* - If First(Y1) First(Y2)..First(Yk) all contain ε then add ε
* to First(Y1Y2..Yk) as well.
*/
function buildFirstSets(grammar) {
firstSets = {};
buildSet(firstOf);
}
function firstOf(symbol) {
// A set may already be built from some previous analysis
// of a RHS, so check whether it's already there and don't rebuild.
if (firstSets[symbol]) {
return firstSets[symbol];
}
// Else init and calculate.
var first = firstSets[symbol] = {};
// If it's a terminal, its first set is just itself.
if (isTerminal(symbol)) {
first[symbol] = true;
return firstSets[symbol];
}
var productionsForSymbol = getProductionsForSymbol(symbol);
for (var k in productionsForSymbol) {
var production = getRHS(productionsForSymbol[k]);
for (var i = 0; i < production.length; i++) {
var productionSymbol = production[i];
// Epsilon goes to the first set.
if (productionSymbol === EPSILON) {
first[EPSILON] = true;
break;
}
// Else, the first is a non-terminal,
// then first of it goes to first of our symbol
// (unless it's an epsilon).
var firstOfNonTerminal = firstOf(productionSymbol);
// If first non-terminal of the RHS production doesn't
// contain epsilon, then just merge its set with ours.
if (!firstOfNonTerminal[EPSILON]) {
merge(first, firstOfNonTerminal);
break;
}
// Else (we got epsilon in the first non-terminal),
//
// - merge all except for epsilon
// - eliminate this non-terminal and advance to the next symbol
// (i.e. don't break this loop)
merge(first, firstOfNonTerminal, [EPSILON]);
// don't break, go to the next `productionSymbol`.
}
}
return first;
}
/**
* We have the following data structure for our grammars:
*
* var grammar = {
* 1: 'S -> F',
* 2: 'S -> (S + F)',
* 3: 'F -> a',
* };
*
* Given symbol `S`, the function returns `S -> F`,
* and `S -> (S + F)` productions.
*/
function getProductionsForSymbol(symbol) {
var productionsForSymbol = {};
for (var k in grammar) {
if (grammar[k][0] === symbol) {
productionsForSymbol[k] = grammar[k];
}
}
return productionsForSymbol;
}
/**
* Given production `S -> F`, returns `S`.
*/
function getLHS(production) {
return production.split('->')[0].replace(/\s+/g, '');
}
/**
* Given production `S -> F`, returns `F`.
*/
function getRHS(production) {
return production.split('->')[1].replace(/\s+/g, '');
}
/**
* Rules for Follow Sets
*
* - First put $ (the end of input marker) in Follow(S) (S is the start symbol)
* - If there is a production A → aBb, (where a can be a whole string)
* then everything in FIRST(b) except for ε is placed in FOLLOW(B).
* - If there is a production A → aB, then everything in
* FOLLOW(A) is in FOLLOW(B)
* - If there is a production A → aBb, where FIRST(b) contains ε,
* then everything in FOLLOW(A) is in FOLLOW(B)
*/
function buildFollowSets(grammar) {
followSets = {};
buildSet(followOf);
}
function followOf(symbol) {
// If was already calculated from some previous run.
if (followSets[symbol]) {
return followSets[symbol];
}
// Else init and calculate.
var follow = followSets[symbol] = {};
// Start symbol always contain `$` in its follow set.
if (symbol === START_SYMBOL) {
follow['$'] = true;
}
// We need to analyze all productions where our
// symbol is used (i.e. where it appears on RHS).
var productionsWithSymbol = getProductionsWithSymbol(symbol);
for (var k in productionsWithSymbol) {
var production = productionsWithSymbol[k];
var RHS = getRHS(production);
// Get the follow symbol of our symbol.
var symbolIndex = RHS.indexOf(symbol);
var followIndex = symbolIndex + 1;
// We need to get the following symbol, which can be `$` or
// may contain epsilon in its first set. If it contains epsilon, then
// we should take the next following symbol: `A -> aBCD`: if `C` (the
// follow of `B`) can be epsilon, we should consider first of `D` as well
// as the follow of `B`.
while (true) {
if (followIndex === RHS.length) { // "$"
var LHS = getLHS(production);
if (LHS !== symbol) { // To avoid cases like: B -> aB
merge(follow, followOf(LHS));
}
break;
}
var followSymbol = RHS[followIndex];
// Follow of our symbol is anything in the first of the following symbol:
// followOf(symbol) is firstOf(followSymbol), except for epsilon.
var firstOfFollow = firstOf(followSymbol);
// If there is no epsilon, just merge.
if (!firstOfFollow[EPSILON]) {
merge(follow, firstOfFollow);
break;
}
merge(follow, firstOfFollow, [EPSILON]);
followIndex++;
}
}
return follow;
}
function buildSet(builder) {
for (var k in grammar) {
builder(grammar[k][0]);
}
}
/**
* Finds productions where a non-terminal is used. E.g., for the
* symbol `S` it finds production `(S + F)`, and for the symbol `F`
* it finds productions `F` and `(S + F)`.
*/
function getProductionsWithSymbol(symbol) {
var productionsWithSymbol = {};
for (var k in grammar) {
var production = grammar[k];
var RHS = getRHS(production);
if (RHS.indexOf(symbol) !== -1) {
productionsWithSymbol[k] = production;
}
}
return productionsWithSymbol;
}
function isTerminal(symbol) {
return !/[A-Z]/.test(symbol);
}
function merge(to, from, exclude) {
exclude || (exclude = []);
for (var k in from) {
if (exclude.indexOf(k) === -1) {
to[k] = from[k];
}
}
}
function printGrammar(grammar) {
console.log('Grammar:\n');
for (var k in grammar) {
console.log(' ', grammar[k]);
}
console.log('');
}
function printSet(name, set) {
console.log(name + ': \n');
for (var k in set) {
console.log(' ', k, ':', Object.keys(set[k]));
}
console.log('');
}
// Testing
// --------------------------------------------------------------------------
// Example 1 of a simple grammar, generates: a, or (a + a), etc.
// --------------------------------------------------------------------------
var grammar = {
1: 'S -> F',
2: 'S -> (S + F)',
3: 'F -> a',
};
var START_SYMBOL = 'S';
printGrammar(grammar);
buildFirstSets(grammar);
printSet('First sets', firstSets);
buildFollowSets(grammar);
printSet('Follow sets', followSets);
// Results:
// Grammar:
//
// S -> F
// S -> (S + F)
// F -> a
//
// First sets:
//
// S : [ 'a', '(' ]
// F : [ 'a' ]
// a : [ 'a' ]
// ( : [ '(' ]
//
// Follow sets:
//
// S : [ '$', '+' ]
// F : [ '$', '+', ')' ]
// --------------------------------------------------------------------------
// Example 2 of a "calculator" grammar (with removed left recursion, which
// is replaced with a right recursion and epsilons), it generates language
// for e.g. (a + a) * a.
// --------------------------------------------------------------------------
var grammar = {
1: 'E -> TX',
2: 'X -> +TX',
3: 'X -> ε',
4: 'T -> FY',
5: 'Y -> *FY',
6: 'Y -> ε',
7: 'F -> a',
8: 'F -> (E)',
};
var START_SYMBOL = 'E';
printGrammar(grammar);
buildFirstSets(grammar);
printSet('First sets', firstSets);
buildFollowSets(grammar);
printSet('Follow sets', followSets);
// Results:
// Grammar:
//
// E -> TX
// X -> +TX
// X -> ε
// T -> FY
// Y -> *FY
// Y -> ε
// F -> a
// F -> (E)
//
// First sets:
//
// E : [ 'a', '(' ]
// T : [ 'a', '(' ]
// F : [ 'a', '(' ]
// a : [ 'a' ]
// ( : [ '(' ]
// X : [ '+', 'ε' ]
// + : [ '+' ]
// Y : [ '*', 'ε' ]
// * : [ '*' ]
//
// Follow sets:
//
// E : [ '$', ')' ]
// X : [ '$', ')' ]
// T : [ '+', '$', ')' ]
// Y : [ '+', '$', ')' ]
// F : [ '*', '+', '$', ')' ]
@Kureev
Copy link

Kureev commented Jun 9, 2016

Hi Dmitry,

Awesome work! One question:

I have a grammar:

var grammar = {
  1: 'S -> Ac',
  2: 'S -> Bb',
  3: 'S -> SCab',
  4: 'A -> a',
  5: 'A -> bB',
  6: 'A -> C',
  7: 'B -> AC',
  8: 'B -> d',
  9: 'C -> aS',
  10: 'C -> CdBd',
  11: 'C -> AB',
  12: 'C -> ε',
};

Your parser shows me that FIRST(S), FIRST(A) and FIRST(B) doesn't include ε, but afaik it should. For instance:
FIRST(S) = FIRST(A) -> a | b | FIRST(C) => {a, b, ε}, because FIRST(a) => {a}, FIRST(b) => {b}, FIRST(C) => {a, b, ε}. Am I wrong?

@kumarmj
Copy link

kumarmj commented Sep 9, 2016

Awesome! many thanks

@hassansw
Copy link

hassansw commented Dec 8, 2016

Thumbs Up mate, the cleanest code i have seen on the web

@kieranshanley
Copy link

kieranshanley commented Mar 18, 2017

Hi Dmitry,

Very useful post on LL parsers. Thanks !

Have a question about first-sets:

If instead we have a

  • non-terminal on the right hand side, like e.g. in A -> BC, then in order
  • to calculate first set of A, we should calculate first set of B, and
  • then merge it to A.

That sentence about calculating the first set of B and merging it into A confused me a bit. It seems to not line up with the more detailed explanation in the Rules for First Sets - maybe it should say we have to calculate the first set of BC and then
give the more detailed rules from the Rules for First Sets:

i.e
`/* - First(BC) is either

    • First(B) (if First(B) doesn't contain ε)
    • OR (if First(B) does contain ε) then First (BC) is everything
  • in First(B) <except for ε > as well as everything in First(C)
    • If First(B) First(C) all contain ε then add ε
  • to First(BC) as well.
    */`

Dont mean to be critical - just want to check my understanding.

Cheers,

Kieran

@DmitrySoshnikov
Copy link
Author

(sorry, I didn't receive any notifications about these questions)

You can test fully working implementation of the First/Follow/Predict sets generation in the Syntax tool (the sets generator lives here).

@Kureev

FIRST(S) = FIRST(A) -> a | b | FIRST(C) => {a, b, ε}, because FIRST(a) => {a}, FIRST(b) => {b}, FIRST(C) => {a, b, ε}. Am I wrong?

Yes, it should include ε (might be a bug in this gist, the correct implementation again can be found in the Syntax tool).

/* test.g */

%%

S
  : A c
  | B b
  | S C a b
  ;

A
  : a
  | b B
  | C
  ;

B
  : A
  | C
  | d
  ;

C
  : a S
  | C d B d
  | A B
  | /* ε */
  ;

To get the sets:

syntax-cli --grammar ~/test.g --mode lalr1 -s first

Result for First sets:

┌────────┬────────────┐
│ Symbol │ First set  │
├────────┼────────────┤
│ S      │ a, b, c, d │
├────────┼────────────┤
│ A      │ a, b, ε    │
├────────┼────────────┤
│ a      │ a          │
├────────┼────────────┤
│ b      │ b          │
├────────┼────────────┤
│ C      │ a, b, ε    │
├────────┼────────────┤
│ c      │ c          │
├────────┼────────────┤
│ B      │ a, b, ε, d │
├────────┼────────────┤
│ d      │ d          │
└────────┴────────────┘

@DmitrySoshnikov
Copy link
Author

@kieranshanley

maybe it should say we have to calculate the first set of BC and then

Thanks, and yes, absolutely correct, it should be "first of RHS", i.e. FIRST(BC). See fully working implementation in the Syntax tool, here.

@nraldayel
Copy link

i want it in java code ? Do you have it please?

@khzouroussama
Copy link

i just easier to learn those concepts from a clean code like this .
Thank you

@changhengliou
Copy link

changhengliou commented Aug 17, 2019

@DmitrySoshnikov
I think there might be a bug?
Consider the case

start symbol = E
E -> T X
T -> ( E ) | a Y
X -> + E | ε
Y -> * T E & | ε

The result of follow(E) and follow(X) should be

E = { $, ), follow(X), & } = { $, ), & }
X = { follow(E) } = { $, ), & }

But the above code yields
image

As the code first trying to solve follow(E). To deal with this, it needs to get follow(X), but at this time, followSets[E] = { $, ) }, and the symbol & is not parsed yet. And it directly call follow(X), which is incorrect.

Intuitively, I am trying to solve this problem after watching this tutorial. After I wrote some code, I met this problem, so I dig into your code, yet I still met this problem.
To solve with this problem, it appears that we have to deal with a complex graph problem in order to figure these relationship.
Any thought on this? Correct me if I'm wrong
Thanks.

@DmitrySoshnikov
Copy link
Author

@qq52184962: yeah, this is a mutual-recursive case for calculating Follow sets. I've checked, the Syntax tool also has this bug, and seems it's the issue #73.

We probably need to patch somehow a set, whenever a depending set is updated.

To check your example in Syntax tool:

File ~/grammar.g

%%

E
  : T X
  ;

T
  : '(' E ')'
  | 'a' Y
  ;

X
  : '+' E
  | /* ε */
  ;

Y
  : '*' T E '&'
  | /* ε */
  ;

Command:

syntax-cli -g ~/grammar.g -m lalr1 -s follow

Follow set:

┌─────────┬────────────────────────────┐
│ Symbol  │ Follow set                 │
├─────────┼────────────────────────────┤
│ $accept │                            │
├─────────┼────────────────────────────┤
│ E       │ $, ')', '&'                │
├─────────┼────────────────────────────┤
│ X       │ $, ')'                     │
├─────────┼────────────────────────────┤
│ T       │ '+', $, ')', '&', '(', 'a' │
├─────────┼────────────────────────────┤
│ Y       │ '+', $, ')', '&', '(', 'a' │
└─────────┴────────────────────────────┘

@Islidius
Copy link

So I think the solution is to split the follow algorithm into to parts. First only merge in the first sets and build the graph for the follow relation and then in a second pass propagate the follow sets. I tested this here: https://gist.github.com/Islidius/e036a9f261b18f9132cf26ef5a9a06c9

This solves the problem for all circular cases like:

grammar = [
    'E -> aT',
    'E -> ε',
    'T -> bE',
    'T -> ε',
    'S -> Ec'
];

which generates now:

FOLLOW(E) = ['c']
FOLLOW(T) = ['c']
FOLLOW(S) = ['$']

@vfgkd
Copy link

vfgkd commented Feb 23, 2023

I am wondering how the recursion in FirstOf terminates in case of the following LR grammar?
S-> A B C
A -> a
B -> B b C
B -> #
C -> c A

When trying to find the FIRST for B, the non-terminal B is again encountered on the RHS and therefore the recursive call will not terminate, I think.
Am I overlooking something?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment