Skip to content

Instantly share code, notes, and snippets.

@zucchini-nlp
Last active October 11, 2024 15:55
Show Gist options
  • Save zucchini-nlp/56ce57276d7b1ee666e957912d8d36ca to your computer and use it in GitHub Desktop.
Save zucchini-nlp/56ce57276d7b1ee666e957912d8d36ca to your computer and use it in GitHub Desktop.
Script to benchmark the latency and memory consumption of different cache implementations
# tested on https://github.com/zucchini-nlp/transformers/tree/quant (commit_id 5f3046a)
import os
import argparse
from pathlib import Path
from time import perf_counter
import numpy as np
from matplotlib import pyplot as plt
import torch
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers.cache_utils import DynamicCache, QuantCache
os.environ["TOKENIZERS_PARALLELISM"] = "0"
class TorchTracemalloc():
track_memory_consumption = []
def __enter__(self):
self.begin = torch.cuda.memory_allocated()
torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero
return self
def __exit__(self, *exc):
peak = torch.cuda.max_memory_allocated()
peaked = (peak - self.begin) // 1024 ** 2
TorchTracemalloc.track_memory_consumption.append(peaked)
#print(f"peak: {peaked}; reserved: {torch.cuda.max_memory_reserved() // 1024 ** 2}")
@torch.no_grad()
def prefill(model, inputs, cache_implementation, nbits=4):
if cache_implementation == "quantized":
past_key_values = QuantCache(nbits=nbits)
else:
past_key_values = DynamicCache()
input_length = inputs["input_ids"].shape[1]
inputs["cache_position"] = torch.arange(input_length, device=inputs["input_ids"].device)
outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
next_token_logits = outputs.logits[:, -1, :]
next_tokens = torch.argmax(next_token_logits, dim=-1)
next_input_ids = torch.cat([inputs["input_ids"], next_tokens[:, None]], dim=-1)
next_model_kwargs = model._update_model_kwargs_for_generation(
outputs,
inputs,
is_encoder_decoder=False,
)
return next_input_ids, next_model_kwargs
def save_bar_chart(title, x, y, ylabel, xlabel, output_path):
width = 0.4
xs = np.arange(len(x))
plt.bar(xs, height=y, width=width)
plt.title(title)
plt.xticks(xs, x)
plt.xlabel(ylabel)
plt.ylabel(xlabel)
plt.savefig(output_path)
def eval_generated_lengths(model, tokenizer, dataset, cache_implementation, nbits, feature, plot_title, output_path):
# warm up
generate_kwargs = {"do_sample": False, "temperature": 1.0, "top_p": 1.0}
for _ in range(3):
inputs_warmup = tokenizer(["Today a dragon flew over Paris"] * 2, return_tensors="pt").to(model.device)
model.generate(**inputs_warmup, max_new_tokens=20, **generate_kwargs)
memory_avg, tokens_per_sec_avg = [], []
time_to_first_token_avg = []
TTFT, TIME_PER_DECODING = [], []
# set default values, only one of them will be changing
parameters = {"max_new_tokens": 500, "batch_size": 1, "input_length": 100}
num_batches = 2 # NOTE: 200 samples total only in dataset
if feature == "batch_size":
x_iterable = [1, 20, 50, 100, 200]
else:
x_iterable = [500, 1000, 4000, 10_000]
for item in x_iterable:
parameters[feature] = item
generate_kwargs_curr = generate_kwargs.copy()
generate_kwargs_curr["min_new_tokens"] = parameters["max_new_tokens"]
generate_kwargs_curr["max_new_tokens"] = parameters["max_new_tokens"]
batch_size = parameters["batch_size"]
with TorchTracemalloc() as tt:
for batch in range(num_batches):
start = perf_counter()
torch.cuda.synchronize()
# chunk this way since we do not have many data samples
curr_chunk = dataset[batch: batch+batch_size]
inputs = tokenizer(
curr_chunk['prompt'],
padding="max_length",
max_length=parameters["input_length"],
truncation=True,
return_tensors="pt"
).to(model.device)
# pre-fill stage
next_input_ids, next_model_kwargs = prefill(model, inputs, cache_implementation, nbits)
TTFT.append(perf_counter() - start)
next_model_kwargs.pop("input_ids")
torch.cuda.synchronize()
# decoding stage
out = model.generate(
next_input_ids,
**next_model_kwargs,
**generate_kwargs_curr
)
TIME_PER_DECODING.append((perf_counter() - start - TTFT[-1]) / batch_size / parameters["max_new_tokens"])
del out
torch.cuda.empty_cache()
torch.cuda.synchronize()
memory_avg.append(TorchTracemalloc.track_memory_consumption[-1])
tokens_per_sec_avg.append(1 / (sum(TIME_PER_DECODING) / len(TIME_PER_DECODING)))
time_to_first_token_avg.append(sum(TTFT) / len(TTFT))
save_bar_chart(
title=plot_title,
x=x_iterable,
y=memory_avg,
ylabel=feature,
xlabel="GPU Memory comsumption in MiB",
output_path=f"{output_path}/memory.png",
)
save_bar_chart(
title=plot_title,
x=x_iterable,
y=tokens_per_sec_avg,
ylabel=feature,
xlabel="Tokens per second",
output_path=f"{output_path}/latency.png",
)
print(f"Tokens per sec (avg) - one per condition: {tokens_per_sec_avg}")
print(f"Time to first token (avg) - one per condition: {tokens_per_sec_avg}")
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--cache_implementation", type=str, default="quantized")
parser.add_argument("--nbits", type=int, default=4)
parser.add_argument("--model_name_or_path", type=str, default="meta-llama/Llama-2-7b-chat-hf")
parser.add_argument("--trust_remote_code", action="store_true")
parser.add_argument("--attn_implementation", type=str, default="sdpa")
parser.add_argument("--dtype", type=str, default="fp16")
parser.add_argument("--num_samples", type=int, default=5)
parser.add_argument("--feature", type=str, default="batch_size", choices=["batch_size", "input_length", "max_new_tokens"])
parser.add_argument("--output_path", type=str, default="./output")
parser.add_argument("--plot_title", type=str, default="Quantized cache in int4")
args = parser.parse_args()
if args.dtype == "fp16":
dtype = torch.float16
elif args.dtype == "fp32":
dtype = torch.float32
elif args.dtype == "bf16":
dtype = torch.bfloat16
else:
raise ValueError(f"Unknown dtype: {args.dtype}")
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path,
trust_remote_code=bool(args.trust_remote_code),
attn_implementation=args.attn_implementation,
torch_dtype=dtype,
).to("cuda:0")
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, trust_remote_code=bool(args.trust_remote_code), padding_side="left")
tokenizer.pad_token_id = tokenizer.eos_token_id
def collate_fn(example):
prompt=f"Question: {example['input']}\nContext: {example['context']}\nAnswer:"
example['prompt'] = prompt
return example
dataset = load_dataset('THUDM/LongBench', "samsum", split='test')
dataset = dataset.map(collate_fn, batched=False)
eval_generated_lengths(
model,
tokenizer,
dataset,
cache_implementation=args.cache_implementation,
nbits=args.nbits,
feature=args.feature,
plot_title=args.plot_title,
output_path=args.output_path,
)
if __name__ == "__main__":
main()
@zucchini-nlp
Copy link
Author

It is expected to be slower in general. I didn't try with 50k context length, though with smaller lengths the token/second latency was just slighlty worse in quantized cache.

What is the batch size you are using and did you enable FA2 for long-context generation? Did you try with smaller batch-size or context length to compare the latency?

@kazunator
Copy link

kazunator commented Oct 10, 2024

I tried with 20k 50k and 100k, and they were all around 80 to 100 seconds for a generation. I used the simpler code from the colab to test it out. It's probably lacking.
Code:

tokenizer = AutoTokenizer.from_pretrained("aifeifei798/DarkIdol-Llama-3.1-8B-Instruct-1.2-Uncensored", padding_side="left")
model = AutoModelForCausalLM.from_pretrained("aifeifei798/DarkIdol-Llama-3.1-8B-Instruct-1.2-Uncensored", torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto")

tokenizer.pad_token_id = tokenizer.eos_token_id

dataset = load_dataset('THUDM/LongBench', "samsum", split='test')
very_long_context = " ".join(dataset["context"])
inputs = tokenizer(very_long_context, max_length=100000, truncation="only_first", return_tensors="pt").to(model.device)

out = model.generate(
**inputs,
max_new_tokens=20,
cache_implementation="quantized",
cache_config={"backend": "quanto", "nbits": 4, "q_group_size": 64, "residual_length": 128}
)
generated_text = tokenizer.batch_decode(out)


I also found something very weird. When using your fork, a normal generation only has slightly worse memory footprint than the quantized version (tapping out at 80k on 40Gb A100, while the quantized taps out at 100k). But when using the main branch, the normal generation has a massive memory footprint, filling out the the entire 40Gbs of VRAM with just 20k tokens. That quite confused me.

@zucchini-nlp
Copy link
Author

Hmm, that is interesting that memory is almost same. It should give a 2.5-3 times less memory footprint in general. Maybe you can provide a reproducer for normal cache which shows that memory footprint is higher in the last release? I'll try to dig into that as it might be an issue we need to solve.

For quant cache, I remember not having memory saving from a certain token count since the bottleneck in those cases was the matmul in Attn module. That is the reason I suggest FA2, but also I'd suggest to calculate memory for decoding stage only (not get the actual sense of how much is saved in cache). Otherwise, the general consumption might not reflect memory used up by cache

@kazunator
Copy link

kazunator commented Oct 10, 2024

Here is the collab to reproduce the normal cache with abnormally high memory footprint on last release: https://colab.research.google.com/drive/1tNDHC7-z2pOEQRLIDf4YfzY339HPl2Q3?usp=sharing
image
As you can see, it's almost filling up the entire VRAM with just 20k context. For comparison, here is how the memory looks like using the same context and the same code but just changing the library to your fork
image
I'm also using FA2 like this on all my tests, whether using fork or main, or using quant or normal cache: model = AutoModelForCausalLM.from_pretrained("aifeifei798/DarkIdol-Llama-3.1-8B-Instruct-1.2-Uncensored", torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto")

Also, here is a link to a documentation of all the test that I've done on your fork and the main lib, using both quant and normal generation (on 20k, 50k, 80k, and 100k. The normal gen on main transformers was only tested on 20k as the other context lengths will result in OOM, and only the quant on the forked lib was able to reach 100k.) : https://docs.google.com/document/d/1TgSIhjwVg04V20mCLqZZcNNcOMhHuSP5loAavfBRXPI/edit?usp=sharing

Honestly, these tests left me thinking that there is some voodoo magic trick in your fork's normal generation, because when I tested vllm without quant using the same model on 20k context, it gave me similar results to the normal generation with the main transformer library. But this could be a massive coincidence of the two libraries having a bad pr merge lately (or maybe vllm is just inefficient)

@zucchini-nlp
Copy link
Author

Thanks a lot for detailed info! I'll take a few hours tomorrow to dig into this

@kazunator
Copy link

You're welcome!

@zucchini-nlp
Copy link
Author

I used the following code with my local A100 (I don't have colab gpus) and I got sensible memory usage. Normal cache is almost twice as much as quantized cache, but still doesn't require much memory as you got. If we assume model weights need 16GiB then the total memory needed is around 21GiB for normal cache.

That is exactly what you got for fork branch, and I got it for the latest main branch (same as release as we didn't change anything afaik)

Normal cache: 4783 MiB VRAM used
Quant cache: 2987 MiB VRAM used

import torch
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("aifeifei798/DarkIdol-Llama-3.1-8B-Instruct-1.2-Uncensored", padding_side="left")
model = AutoModelForCausalLM.from_pretrained("aifeifei798/DarkIdol-Llama-3.1-8B-Instruct-1.2-Uncensored", torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto")

tokenizer.pad_token_id = tokenizer.eos_token_id
dataset = load_dataset('THUDM/LongBench', "samsum", split='test')
very_long_context = " ".join(dataset["context"])
inputs = tokenizer(very_long_context, max_length=20000, truncation="only_first", return_tensors="pt").to(model.device)

generation_kwargs = {"do_sample": False, "temperature": 1.0, "top_p": 1.0, "max_new_tokens": 20, "min_new_tokens": 20, "cache_implementation": "quantized"}

begin_mem = torch.cuda.memory_allocated()

out_fp16 = model.generate(**inputs, **generation_kwargs)
generated_text = tokenizer.batch_decode(out_fp16)


end_mem = torch.cuda.max_memory_allocated()
print(f"{(end_mem - begin_mem) // 1024 ** 2} MiB VRAM used")

@kazunator
Copy link

kazunator commented Oct 10, 2024

Hmm, I think I found the issue. When I just pip install the normal transformers package, the issue persists with high memory footprint, but when I clone the main branch, I get similar results to you. The transformers version where the issue exists is 4.44.2 (at least on colab). I do remember that I've tried to test the main branch with gitclone yesterday and got the memory footprint issue, but maybe that's just my faulty memory. In any case, this new test I've done was with the pip package and it's still reproducible on my end.

Other than that, I also wanted to ask you about the time it takes to generate with quantized cache. Was I doing something egregiously wrong with my code? Or is that expected behavior?

This code:

import torch
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
import time

tokenizer = AutoTokenizer.from_pretrained("aifeifei798/DarkIdol-Llama-3.1-8B-Instruct-1.2-Uncensored", padding_side="left")
model = AutoModelForCausalLM.from_pretrained("aifeifei798/DarkIdol-Llama-3.1-8B-Instruct-1.2-Uncensored", torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto")

tokenizer.pad_token_id = tokenizer.eos_token_id
dataset = load_dataset('THUDM/LongBench', "samsum", split='test')
very_long_context = " ".join(dataset["context"])
inputs = tokenizer(very_long_context, max_length=20000, truncation="only_first", return_tensors="pt").to(model.device)

generation_kwargs = {"do_sample": False, "temperature": 1.0, "top_p": 1.0, "max_new_tokens": 20, "min_new_tokens": 20, "cache_implementation": "quantized"}

begin_mem = torch.cuda.memory_allocated()

start_time = time.time()
out_fp16 = model.generate(**inputs, **generation_kwargs)
generated_text = tokenizer.batch_decode(out_fp16)
end_time = time.time()

time_taken = end_time - start_time
end_mem = torch.cuda.max_memory_allocated()

print(f"Time taken: {time_taken:.2f} seconds")
print(f"{(end_mem - begin_mem) // 1024 ** 2} MiB VRAM used")

Results in a time to generate of: 93.68 seconds
The normal generation on the other hand just takes: 4.62 seconds

@zucchini-nlp
Copy link
Author

The transformers version where the issue exists is 4.44.2 (at least on colab).

Hmm, I remember we had some memory issues with normal cache a while ago and it was fixed, though I don't remember the exact release. That might be the problem. I'll check out, but as long as the latest branch is not leaking memory we should be okay :)

Was I doing something egregiously wrong with my code? Or is that expected behavior?

Which branch is this test on latency done? On main branch I am getting 9 sec and 16 sec for each of the cache types, which is expected to be that way (x2 latency diff at maximum)

@kazunator
Copy link

kazunator commented Oct 11, 2024

Huh, is that with optimum-quanto? I just used normal quanto for my tests because when using optimum, I get this weird error for the same code: ValueError: shift must be specified for qtypes lower than 8-bit

Code:

from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
import psutil
import gc

def get_gpu_memory():
    return torch.cuda.memory_allocated() / 1024**2  # Convert to MB

def get_ram_usage():
    return psutil.Process().memory_info().rss / 1024**2  # Convert to MB
# Memory usage before generation
gpu_memory_before = get_gpu_memory()
ram_before = get_ram_usage()

tokenizer = AutoTokenizer.from_pretrained("aifeifei798/DarkIdol-Llama-3.1-8B-Instruct-1.2-Uncensored", padding_side="left")
model = AutoModelForCausalLM.from_pretrained("aifeifei798/DarkIdol-Llama-3.1-8B-Instruct-1.2-Uncensored", torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto")

tokenizer.pad_token_id = tokenizer.eos_token_id
dataset = load_dataset('THUDM/LongBench', "samsum", split='test')
very_long_context = " ".join(dataset["context"])
inputs = tokenizer(very_long_context, max_length=20000, truncation="only_first", return_tensors="pt").to(model.device)

generation_kwargs = {"do_sample": False, "temperature": 1.0, "top_p": 1.0, "max_new_tokens": 20, "min_new_tokens": 20, "cache_implementation": "quantized"}

# Time the generation
start_time = time.time()


out_fp16 = model.generate(**inputs, **generation_kwargs)
generated_text = tokenizer.batch_decode(out_fp16)

end_time = time.time()

# Memory usage after generation
gpu_memory_after = get_gpu_memory()
ram_after = get_ram_usage()

# Calculate differences
gpu_memory_used = gpu_memory_after - gpu_memory_before
ram_used = ram_after - ram_before
time_taken = end_time - start_time

print(f"Generated text: {generated_text}")
print(f"Time taken: {time_taken:.2f} seconds")
print(f"GPU memory used: {gpu_memory_used:.2f} MB")
print(f"RAM used: {ram_used:.2f} MB")

The installation for optimum-quanto was done like this:
!pip install optimum-quanto

With normal quanto, this code takes 90s

@zucchini-nlp
Copy link
Author

I still can't get 90s for quant cache. My env is as follows. And for optimum-quanto you have to install 2.4.0 version (not more) and have transformers from main. I recently fixes a bug there. But I didn't notice much difference between quanto and optimum-quanto

- quanto==0.2.0
- `transformers` version: 4.46.0.dev0
- Platform: Linux-5.4.0-166-generic-x86_64-with-glibc2.29
- Python version: 3.8.10
- Huggingface_hub version: 0.24.3
- Safetensors version: 0.4.3
- Accelerate version: 0.34.2
- Accelerate config:    not found
- PyTorch version (GPU?): 2.4.1+cu121 (True)
- Tensorflow version (GPU?): 2.13.1 (False)
- Flax version (CPU?/GPU?/TPU?): 0.7.0 (cpu)
- Jax version: 0.4.13
- JaxLib version: 0.4.13
- GPU type: NVIDIA A100-SXM4-80GB

@kazunator
Copy link

kazunator commented Oct 11, 2024

That's so weird. Here is my current settings where I still get 90s generation time

Quanto version: 0.2.0
Platform: Linux-6.1.85+-x86_64-with-glibc2.35
Python version: 3.10.12
PyTorch version (GPU?): 2.4.1+cu121 (True)
Tensorflow version (GPU?): 2.17.0 (True)
Flax version (CPU?/GPU?/TPU?): 0.8.5 (cpu)
Jax version: 0.4.33
JaxLib version: 0.4.33
Huggingface_hub version: 0.24.7
Safetensors version: 0.4.5
Transformers version: 4.46.0.dev0
Accelerate version: 0.34.2
GPU type: NVIDIA A100-SXM4-40GB
- `Accelerate` default config: Not found

I also tried with optimum quanto using the right version and it's still taking 90s to generate

@kazunator
Copy link

Does colab provide free GPUs? I could restructure the code a bit, use a 1B model, and test the quantized version on like 10k context length if that fits in memory. Then we can compare with similar environments

@zucchini-nlp
Copy link
Author

Yes, colab has free 14GiB T4 gpu and if you can get it working there would be nice. I was thinking that it was hardware related since the quantization can get better performance in more recent GPUs. But you had half A100 in your local setting, so I don't have an idea currently

@kazunator
Copy link

You can't use flash attention on the T4 so it's hard to do this comparison, but this code also leads to an 80s generation time

import torch
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
import psutil
import gc

def get_gpu_memory():
    return torch.cuda.memory_allocated() / 1024**2  # Convert to MB

def get_ram_usage():
    return psutil.Process().memory_info().rss / 1024**2  # Convert to MB
# Memory usage before generation
gpu_memory_before = get_gpu_memory()
ram_before = get_ram_usage()

tokenizer = AutoTokenizer.from_pretrained("unsloth/Llama-3.2-1B-Instruct", padding_side="left")
model = AutoModelForCausalLM.from_pretrained("unsloth/Llama-3.2-1B-Instruct", torch_dtype=torch.float16, device_map="auto")

tokenizer.pad_token_id = tokenizer.eos_token_id
dataset = load_dataset('THUDM/LongBench', "samsum", split='test')
very_long_context = " ".join(dataset["context"])
inputs = tokenizer(very_long_context, max_length=10000, truncation="only_first", return_tensors="pt").to(model.device)

generation_kwargs = {"do_sample": False, "temperature": 1.0, "top_p": 1.0, "max_new_tokens": 20, "min_new_tokens": 20, "cache_implementation": "quantized"}

# Time the generation
start_time = time.time()


out_fp16 = model.generate(**inputs, **generation_kwargs)
generated_text = tokenizer.batch_decode(out_fp16)

end_time = time.time()

# Memory usage after generation
gpu_memory_after = get_gpu_memory()
ram_after = get_ram_usage()

# Calculate differences
gpu_memory_used = gpu_memory_after - gpu_memory_before
ram_used = ram_after - ram_before
time_taken = end_time - start_time

print(f"Generated text: {generated_text}")
print(f"Time taken: {time_taken:.2f} seconds")
print(f"GPU memory used: {gpu_memory_used:.2f} MB")
print(f"RAM used: {ram_used:.2f} MB")

Btw, these are my pip installs:

!pip install -q git+https://github.com/huggingface/transformers
!pip install datasets accelerate 
!pip install -q flash-attn --no-build-isolation
!pip install quanto

@kazunator
Copy link

Can you try out that code to see your generation time on collab? Would also be interesting to test with and without flash attention on ur A100 to see if u get similar generation time (just in case flash attention isn't working well on the colab A100 for me)

@zucchini-nlp
Copy link
Author

zucchini-nlp commented Oct 11, 2024

Can you try this code pls, so we can verify it is the quanto quantization that is slow? I am getting 14sec on this. Basically it is all the quantization and dequantization that happens during generating with your input

I will ask internally from guys that maintain quanto what can be the reason

from quanto import AffineQuantizer, MaxOptimizer, qint2, qint4
import time
import torch

dummy_tensor_inputs = torch.randn(1, 32, 10_000, 128)
optimizer = MaxOptimizer()
qtype = qint4
q_group_size = 64
axis = 0

# quantize once per layer
for _ in range(16):
    scale, zeropoint = optimizer(dummy_tensor_inputs, qtype.bits, axis, q_group_size)
    qtensor = AffineQuantizer.apply(dummy_tensor_inputs, qtype, axis, q_group_size, scale, zeropoint)

start = time.perf_counter()
for _ in range(16 * 20):
    dequant_tensor = qtensor.dequantize()

end = time.perf_counter()
print(f"Time taken: {(end - start):.2f} seconds")

@kazunator
Copy link

kazunator commented Oct 11, 2024

I got this on colab A100: Time taken: 52.24 seconds

@zucchini-nlp
Copy link
Author

oke, so it is something related to how quanto internally works. I will ask what can affect latency, except for hardware

@kazunator
Copy link

Did you get 14s on the colab T4? I got 60 seconds on T4 on my end

@zucchini-nlp
Copy link
Author

I am getting 164sec 🙃 on free colab with T4, but local machine with A100-80GB runs in 14sec

@kazunator
Copy link

Holy....

@zucchini-nlp
Copy link
Author

sorry, I forgot to add "cuda" on the last script. Can you move dummy tensor to cuda first before doing all the quant part? On an A100 machine if you can pls

And if it doesn't make things faster, feel free to open an issue in transformers so we can track it there

@kazunator
Copy link

Like this? dummy_tensor_inputs = torch.randn(1, 32, 10_000, 128).to("cuda")
I tested it and it was still 80 seconds on A100 Colab

@zucchini-nlp
Copy link
Author

yes, and if you can open an issue where I'll tag involved ppl to help you out?

@kazunator
Copy link

okay, I made an issue here: huggingface/transformers#34096

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment