Skip to content

Instantly share code, notes, and snippets.

@yunruse
Last active May 21, 2021 13:07
Show Gist options
  • Save yunruse/0d6795372d4e7c3a720d3cbf7165f83e to your computer and use it in GitHub Desktop.
Save yunruse/0d6795372d4e7c3a720d3cbf7165f83e to your computer and use it in GitHub Desktop.
Yes, you can do trigonometry on matrices using the Taylor series, and identities will hold.
import math
import numpy as np
import numpy as np
from numpy.linalg import matrix_power
def pow(a, n):
if isinstance(a, np.ndarray):
return matrix_power(a, n)
else:
return a ** n
class TaylorExpansion:
def __init__(self, func):
self.func = func
def __call__(self, x, N=10):
if isinstance(N, int):
return sum(self.func(x, i) for i in range(N))
else:
raise TypeError('N must be an integer.')
return NotImplemented
@TaylorExpansion
def exp(x, i):
return pow(x, i) / math.factorial(i)
@TaylorExpansion
def log1p(x, i):
if i == 0:
return 0
return (-1) ** (i+1) * pow(x, i) / i
@TaylorExpansion
def sin(x, i):
k = 1 + 2 * i
return (-1)**i * pow(x, k) / math.factorial(k)
@TaylorExpansion
def cos(x, i):
return (-1)**i * pow(x, 2*i) / math.factorial(2*i)
def exponent(a, b):
return exp(b * log1p(b - 1))
if __name__ == '__main__':
A = np.array([[1, 2], [3, 4]])
print(f'array A:\n{A}')
print(f'sin(A):\n{sin(A)}')
I_approx = sin(A)**2 + cos(A)**2
print(f'sin^2 + cos^2:\n{I_approx}')
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment