Created
November 12, 2020 19:50
-
-
Save vschmidt/c5f0b87b1f61fcaf3c4e18d99cabbf45 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
from sklearn.preprocessing import LabelEncoder, StandardScaler | |
from sklearn.model_selection import train_test_split | |
from sklearn.linear_model import LogisticRegression | |
# Parâmetros | |
path = 'D:\\dados\\leads.xlsx' | |
#Importação | |
df_leads = pd.read_excel(path) | |
#Tratamento | |
df_leads['Origem do Cliente'] = LabelEncoder().fit_transform(df_leads['Origem do Cliente']) | |
df_leads['Última atividade'] = LabelEncoder().fit_transform(df_leads['Última atividade']) | |
entradas = df_leads.drop(['Conseguiu vender', 'ID do Cliente'],axis=1) | |
saidas = df_leads['Conseguiu vender'] | |
df_final = StandardScaler().fit_transform(df_leads) | |
x_treino, x_teste, y_treino, y_teste = train_test_split(entradas, | |
saidas, | |
test_size=0.33, | |
random_state=42) | |
#Treino do modelo | |
log_reg = LogisticRegression(solver="lbfgs") | |
log_reg.fit(x_treino, y_treino) | |
y_pred_proba = log_reg.predict_proba(x_teste)[:,1] #Probabilidades de fechar negócio | |
#Report | |
report = df_leads.copy() | |
report['% de fechar'] = log_reg.predict_proba(entradas)[:,1] | |
report = report.sort_values(by=['% de fechar'], ascending=False) | |
report['% de fechar'] = report['% de fechar'].apply(lambda w: "{:.2%}".format(w)) | |
report = report.loc[:, ['ID do Cliente', '% de fechar']] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment