Skip to content

Instantly share code, notes, and snippets.

View vejvarm's full-sized avatar

Martin Vejvar vejvarm

  • Yokohama National University
  • Japan
  • 21:24 (UTC +09:00)
View GitHub Profile
@vejvarm
vejvarm / ms-amp-installation.sh
Last active October 30, 2024 07:21
Installing MS-AMP to a local conda environment (needs sudo rights)
# create new local conda env
conda create --prefix ./.conda python=3.11
conda activate ./.conda
# https://azure.github.io/MS-AMP/docs/getting-started/installation/
git clone https://github.com/Azure/MS-AMP.git
cd MS-AMP
git submodule update --init --recursive
cd third_party/msccl
@vejvarm
vejvarm / repl_var_names.cy
Created May 9, 2024 05:30
repl_var_names
MATCH (T1:ROOT__endowment)
MATCH (T2:ROOT__school)
WHERE (T2_school_name = 'Glenn')
RETURN DISTINCT count(DISTINCT T1.endowment__donator_name) AS aggregation_ T1.endowment__donator_name _106
@vejvarm
vejvarm / ast.json
Created May 9, 2024 02:59
Complex Parser example with FILTER, HAVING, GROUP BY and conditional operators (&&/||)
{
"sPREFIX": {},
"RETURN": [
"T1_school_name"
],
"TRIPLES": {
"T1": {
"label": "ROOT__school",
"school__school_name": "T1_school_name"
},
@prefix : <http://valuenet/ontop/> .
@prefix budget: <http://valuenet/ontop/budget#> .
@prefix endowment: <http://valuenet/ontop/endowment#> .
@prefix school: <http://valuenet/ontop/school#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
<http://valuenet/ontop/budget/school_id=1;year=2003> a :budget ;
budget:SCHOOL_ID <http://valuenet/ontop/school/school_id=1> ;
budget:budget_invested_percent "71.3" ;
budget:budgeted 119527 ;
{
"RETURN": [
"DISTINCT",
"*"
],
"TRIPLES": {
"T1": {
"label": "ROOT__projects",
"projects__project_details": "T1_project_details",
"projects__project_id": "T1_project_id"
@vejvarm
vejvarm / cuda_12.2_installation_on_Ubuntu_20.04
Last active November 21, 2024 05:01 — forked from MihailCosmin/cuda_11.8_installation_on_Ubuntu_22.04
Instructions for CUDA v12.2 and cuDNN 8.7 installation on Ubuntu 20.04 for PyTorch 2.0.0
#!/bin/bash
### steps ####
# verify the system has a cuda-capable gpu
# download and install the nvidia cuda toolkit and cudnn
# setup environmental variables
# verify the installation
###
### to verify your gpu is cuda enable check
import pathlib
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
def read_data(path_to_csv):
df = pd.read_csv(path_to_csv, skiprows=3)
unit = df.iloc[:, 1].name.split("(")[-1][:-1]