Created
July 9, 2023 09:19
-
-
Save vejvarm/139d11c773313c91cadde8f90bff5a8c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pathlib | |
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
def read_data(path_to_csv): | |
df = pd.read_csv(path_to_csv, skiprows=3) | |
unit = df.iloc[:, 1].name.split("(")[-1][:-1] | |
return df.iloc[:, 0], df.iloc[:, 1], unit | |
def calculate_psd(path_to_folder: str or pathlib.Path): | |
folder_path = pathlib.Path(path_to_folder) | |
assert folder_path.exists(), "Path to data folder doesn't exist" | |
csv_files = folder_path.glob("*.csv") | |
results = {} | |
for pth in csv_files: | |
t, x, unit = read_data(pth) | |
fs = 1 / (t.diff().mean()) | |
# remove zero-shift | |
x -= x.mean() | |
# apply windowing function | |
w = np.hamming(len(x)) | |
xw = x * w | |
# calculate fft | |
nfft = len(x) | |
freq = np.arange(0, fs / 2, fs / nfft)[:-1] | |
X = np.fft.fft(xw, nfft) | |
# convert to PSD | |
psdX = np.abs(X) ** 2 | |
psdX = psdX[:nfft // 2] | |
# scale the PSD | |
# scaling factor (from window function) | |
S = sum(w ** 2) | |
psdX = 2 * psdX / (fs * S) | |
# from scipy.signal import periodogram | |
# Calculate PSD using periodogram function (gives same results) | |
# freq2, psd2 = periodogram(x, fs, "hamming", nfft)[:nfft//2] | |
results[pth.stem] = {"freq": freq, "PSD": psdX, "unit": unit} | |
return results | |
def plot_results(results: dict[str: dict], save_folder: str or pathlib.Path, f_start: float, f_finish: float, | |
title: str, xlabel: str, ylabel: str): | |
save_folder = pathlib.Path(save_folder) | |
plt.figure() | |
global_unit = None | |
for label, data in results.items(): | |
freq = data["freq"] | |
psdX = data["PSD"] | |
if global_unit is None: | |
global_unit = data["unit"] | |
else: | |
assert global_unit == data["unit"], "All data must have same unit!" | |
plt.plot(freq, psdX, label=label, linestyle="solid") | |
plt.title(title) | |
plt.xlabel(xlabel) | |
lab = ylabel.format(global_unit) | |
plt.ylabel(lab) | |
save_folder.mkdir(parents=True, exist_ok=True) | |
plt.xlim(f_start, f_finish) | |
plt.legend() | |
plt.savefig(save_folder.joinpath("psd_comparison.png"), dpi=200) | |
plt.savefig(save_folder.joinpath("psd_comparison.pdf"), ) | |
if __name__ == '__main__': | |
# --- set these and then run -------------- | |
path_to_data_folder = "./data/test" | |
f_start = 0. | |
f_finish = 0.5 | |
# --- optional: | |
result_folder = path_to_data_folder # by default, results are saved to same folder as data | |
title_of_plot = "Power Spectral Density" | |
xlabel_of_plot = 'Frequency (Hz)' | |
ylabel_of_plot = "Power Spectral Density ({}$^2$/Hz)" # {} will be replaced by unit of the time series | |
# ----------------------------------------- | |
results = calculate_psd(path_to_data_folder) | |
plot_results(results, result_folder, f_start, f_finish, title_of_plot, xlabel_of_plot, ylabel_of_plot) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment