Created
October 15, 2024 12:30
-
-
Save tomaarsen/4b00b0e3be8884efa64cfab9230b161f to your computer and use it in GitHub Desktop.
Export Sentence Transformer models to ONNX (+ optimization, quantization) & OpenVINO
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# requires sentence_transformers>=3.2.0 | |
from sentence_transformers import SentenceTransformer, export_optimized_onnx_model, export_dynamic_quantized_onnx_model | |
# The model to export to ONNX (+ optimize, quantize), OpenVINO | |
model_id = "mixedbread-ai/mxbai-embed-large-v1" | |
# Where to save the exported models locally | |
output_dir = model_id.replace("/", "-") | |
onnx_model = SentenceTransformer(model_id, backend="onnx", model_kwargs={"export": True}) | |
onnx_model.save_pretrained(output_dir) | |
for optimization_config in ["O1", "O2", "O3", "O4"]: | |
export_optimized_onnx_model( | |
onnx_model, | |
optimization_config=optimization_config, | |
model_name_or_path=output_dir, | |
) | |
for quantization_config in ['arm64', 'avx2', 'avx512', 'avx512_vnni']: | |
export_dynamic_quantized_onnx_model( | |
onnx_model, | |
quantization_config=quantization_config, | |
model_name_or_path=output_dir, | |
) | |
openvino_model = SentenceTransformer(model_id, backend="openvino") | |
openvino_model.save_pretrained(output_dir) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# requires sentence_transformers>=3.2.0 | |
from sentence_transformers import SentenceTransformer, export_optimized_onnx_model, export_dynamic_quantized_onnx_model | |
# The model to export to ONNX (+ optimize, quantize), OpenVINO | |
model_id = "mixedbread-ai/mxbai-embed-large-v1" | |
# The repository to push the ONNX, OpenVINO models to | |
output_model_id = "tomaarsen/mxbai-embed-large-v1-exported" | |
# Do we push directly, or create a PR? A PR is useful for reviewing the changes | |
# before merging or if you don't have write access. | |
create_pr = False | |
onnx_model = SentenceTransformer(model_id, backend="onnx", model_kwargs={"export": True}) | |
onnx_model.push_to_hub(output_model_id, exist_ok=True, create_pr=create_pr) | |
for optimization_config in ["O1", "O2", "O3", "O4"]: | |
export_optimized_onnx_model( | |
onnx_model, | |
optimization_config=optimization_config, | |
model_name_or_path=output_model_id, | |
push_to_hub=True, | |
create_pr=create_pr, | |
) | |
for quantization_config in ['arm64', 'avx2', 'avx512', 'avx512_vnni']: | |
export_dynamic_quantized_onnx_model( | |
onnx_model, | |
quantization_config=quantization_config, | |
model_name_or_path=output_model_id, | |
push_to_hub=True, | |
create_pr=create_pr, | |
) | |
openvino_model = SentenceTransformer(model_id, backend="openvino") | |
openvino_model.push_to_hub(output_model_id, exist_ok=True, create_pr=create_pr) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment