-
-
Save sugatoray/af033833f29bed2099ea4150bdb619d7 to your computer and use it in GitHub Desktop.
Showcase electricity consumption data for 2023 from ElectricityMaps via Python great_tables
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from great_tables import GT, md, html, system_fonts | |
import pandas as pd | |
power_cie_prepared_tbl = pd.read_csv("./data/2023_cie_power_cons.csv") | |
# Create a Great Tables object | |
ciep_gt_tbl = GT(data=power_cie_prepared_tbl) | |
# Apply wider color ranges & formatting | |
gt_tbl = ciep_gt_tbl \ | |
.fmt_percent(columns=['Hydro', 'Nuclear', 'Wind', 'Solar', 'Geothermal', 'Biomass', 'Gas', | |
'Coal', 'Oil', 'Unknown', 'Hydro Discharge', 'Battery Discharge'], | |
decimals=1) \ | |
.fmt_number(columns=['CO2 Intensity'], | |
decimals=0) \ | |
.data_color( | |
columns=['CO2 Intensity'], | |
palette=[ | |
"#00A600", "#E6E600", "#E8C32E", "#D69C4E", "#Dc863B", "sienna", "sienna4", "tomato4", "brown"], | |
domain=[0, 900] | |
) \ | |
.data_color( | |
columns=['Hydro', 'Nuclear', 'Wind', 'Solar','Geothermal'], | |
palette=["#00A600", "chartreuse3", "chartreuse4", "snow"][::-1], | |
domain=[0, 1] | |
) \ | |
.data_color( | |
columns=['Hydro', 'Geothermal'], | |
palette=["#00A600", "chartreuse3", "chartreuse4", "snow"][::-1], | |
domain=[0, 1] | |
) \ | |
.data_color( | |
columns=['Biomass'], | |
palette=["snow", "#EEC900", "#E8C32E", "#D69C4E"], | |
domain=[0, 0.3] | |
) \ | |
.data_color( | |
columns=['Gas', 'Coal', 'Oil'], | |
palette=["tomato4", "sienna4", "#D69C4E", "#Dc863B", "snow"][::-1], | |
domain=[0, 1] | |
) \ | |
.data_color( | |
columns=['Zone','Unknown', 'Hydro Discharge', 'Battery Discharge'], | |
palette=["snow", "snow", "snow", 'snow'] | |
) \ | |
.cols_width( | |
{'CO2 Intensity': '58px','Hydro': '58px', 'Nuclear': '58px', 'Wind': '58px', 'Solar': '58px', | |
'Geothermal': '58px', 'Biomass': '58px', 'Gas': '58px', 'Coal': '58px', | |
'Oil': '58px', 'Unknown': '58px', 'Hydro Discharge': '58px', | |
'Battery Discharge': '58px'} | |
) \ | |
.tab_header( | |
title=md("2023 Mean **Carbon Intensity** (gCO2eq/kWh) and **Power Consumption** Breakdown (%)") | |
) \ | |
.tab_source_note( | |
md( | |
'<br><div style="text-align: left;">' | |
"**Source**: api.electricitymap.org" | |
" | **Methodology**: https://www.electricitymaps.com/methodology." | |
" Some emissions factors are based on IPCC 2014 defaults, while some are based on more accurate regional factors." | |
" <br>All zones are publicly available on the *Carbon intensity and emission factors* tab via Google docs link<br>" | |
"</div>" | |
"<br>" | |
) | |
) \ | |
.tab_options( | |
source_notes_font_size='x-small', | |
source_notes_padding=3, | |
table_font_names=system_fonts("humanist"), | |
data_row_padding='1px', | |
heading_background_color='antiquewhite', | |
source_notes_background_color='antiquewhite', | |
column_labels_background_color='antiquewhite', | |
table_background_color='snow', | |
data_row_padding_horizontal=3, | |
column_labels_padding_horizontal=58 | |
) \ | |
.cols_align( | |
align='center' | |
) \ | |
.cols_align( | |
align='left', | |
columns=['Zone'] | |
) \ | |
.opt_table_outline() | |
gt_tbl |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment