Skip to content

Instantly share code, notes, and snippets.

@sputnick1124
Created March 7, 2018 07:56
Show Gist options
  • Save sputnick1124/b40ca05d9cc7b5a5575804bc914e26bb to your computer and use it in GitHub Desktop.
Save sputnick1124/b40ca05d9cc7b5a5575804bc914e26bb to your computer and use it in GitHub Desktop.
C++ 3D trilinear interpolation
#include <vector>
#include <iostream>
#include <algorithm>
class ThreeDLookup {
public:
ThreeDLookup(std::vector<double> &x,
std::vector<double> &y,
std::vector<double> &z,
std::vector< std::vector< std::vector<double> > > &a_dataTable);
~ThreeDLookup();
double Interp(double xq, double yq, double zq);
private:
std::vector<double> xvec;
std::vector<double> yvec;
std::vector<double> zvec;
std::vector< std::vector< std::vector<double> > > dataTable;
double minx, miny, minz;
double maxx, maxy, maxz;
};
ThreeDLookup::ThreeDLookup(std::vector<double> &x,
std::vector<double> &y,
std::vector<double> &z,
std::vector< std::vector< std::vector<double> > > &a_dataTable) {
xvec.insert(xvec.end(), x.begin(), x.end());
yvec.insert(yvec.end(), y.begin(), y.end());
zvec.insert(zvec.end(), z.begin(), z.end());
dataTable = a_dataTable;
auto xbounds = std::minmax_element(x.begin(), x.end());
minx = *xbounds.first; maxx = *xbounds.second;
auto ybounds = std::minmax_element(y.begin(), y.end());
miny = *ybounds.first; maxy = *ybounds.second;
auto zbounds = std::minmax_element(z.begin(), z.end());
minz = *zbounds.first; maxz = *zbounds.second;
}
ThreeDLookup::~ThreeDLookup() {};
double ThreeDLookup::Interp(double xq, double yq, double zq)
{
/*
* Assumes that all abscissa are monotonically increasing values
*/
xq = std::max(minx, std::min(xq, maxx));
yq = std::max(miny, std::min(yq, maxy));
zq = std::max(minz, std::min(zq, maxz));
auto xupper = std::upper_bound(xvec.cbegin(), xvec.cend(), xq);
int x1 = (xupper == xvec.cend()) ? xupper - xvec.cbegin() - 1 : xupper - xvec.cbegin();
int x0 = x1 - 1;
auto yupper = std::upper_bound(yvec.cbegin(), yvec.cend(), yq);
int y1 = (yupper == yvec.cend()) ? yupper - yvec.cbegin() - 1 : yupper - yvec.cbegin();
auto y0 = y1 - 1;
auto zupper = std::upper_bound(zvec.cbegin(), zvec.cend(), zq);
int z1 = (zupper == zvec.cend()) ? zupper - zvec.cbegin() - 1 : zupper - zvec.cbegin();
auto z0 = z1 - 1;
double xd = (xq - xvec[x0])/(xvec[x1] - xvec[x0]);
double yd = (yq - yvec[y0])/(yvec[y1] - yvec[y0]);
double zd = (zq - zvec[z0])/(zvec[z1] - zvec[z0]);
double c000 = dataTable[x0][y0][z0];
double c010 = dataTable[x0][y1][z0];
double c100 = dataTable[x1][y0][z0];
double c110 = dataTable[x1][y1][z0];
double c001 = dataTable[x0][y0][z1];
double c011 = dataTable[x0][y1][z1];
double c101 = dataTable[x1][y0][z1];
double c111 = dataTable[x1][y1][z1];
double c00 = c000*(1 - xd) + c100*xd;
double c01 = c001*(1 - xd) + c101*xd;
double c10 = c010*(1 - xd) + c110*xd;
double c11 = c011*(1 - xd) + c111*xd;
double c0 = c00*(1 - yd) + c10*yd;
double c1 = c01*(1 - yd) + c11*yd;
double c = c0*(1 - zd) + c1*zd;
return c;
}
int main(int argc, char * argv[]) {
std::vector< std::vector< std::vector<double> > > dataTable;
for (auto i = 0; i < 10; ++i) {
std::vector< std::vector<double> > tmpi;
for (auto j = 0; j < 10; ++j) {
std::vector<double> tmpj;
for (auto k = 0; k < 10; ++k) {
tmpj.push_back( (double)i*j*k );
}
tmpi.push_back(tmpj);
}
dataTable.push_back(tmpi);
}
std::vector<double> x, y, z;
for (double i = 0.0; i < 10.0; i += 1.0) {
x.push_back(i);
y.push_back(i);
z.push_back(i);
}
for (auto i = 0; i < 10; ++i) {
std::cout << x[i] << " " << y[i] << " " << z[i] << std::endl;
}
ThreeDLookup lut3d(x, y, z, dataTable);
double val = lut3d.Interp(1.2, 5.6, 8.3);
//double val = lut3d.Interp(0.0, 0.0, 0.0);
//double val = lut3d.Interp(9.0, 9.0, 9.0);
//double val = lut3d.Interp(10.0, 10.0, 10.0);
//double val = lut3d.Interp(-1.0, -1.0, -1.0);
std::cout << val << std::endl;
return 0;
}
@shikhindahikar
Copy link

Is there a faster way with CUDA for this algorithm?

@sputnick1124
Copy link
Author

sputnick1124 commented Jan 15, 2024

I'm sure there are a great many ways to improve or optimize this implementation of 3D lookup, even without having to resort to CUDA (though I'm also sure that a CUDA rewrite would see significant speed ups). This was written for a specific application within a larger C++ simulation framework and needed to be correct, simple, and self-contained, but not necessarily fast. Looking at it now, there are a few things I would implement differently these days, but if all you need is something that works, this fits the bill just fine.

Cheers.

@shikhindahikar
Copy link

Just to confirm, this is the interpolation for the LUT file used for video/image color grading right? It is usually a .cube file containing a 33x33x33 elements cube with RGB value in every element which makes it total of 33x33x33x3 elements. That is what I am looking for.

@sputnick1124
Copy link
Author

Oh, nope. Sorry for the miscommunication. This is just for vanilla linear interpolation with 3 input dimensions. You could write a parser to ingest a .cube file and hook it up to this, but you're probably better off finding something already tailored to your needs if you care about performance.

There are a number of repos that have libraries/code for what you are referring to, though.

Good luck!

@shikhindahikar
Copy link

Thanks! I will try them out. I did read a bit on OpenColorIO before but I believe they do not offer GPU based processing.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment