-
-
Save sneurlax/182390ed8d74689fbf37090e467c063e to your computer and use it in GitHub Desktop.
Linkable Ring signatures using Py-EC
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# MIT License | |
# | |
# Copyright (C) 2014 Jesper Borgstrup | |
# ------------------------------------------------------------------- | |
# Permission is hereby granted, free of charge, to any person | |
# obtaining a copy of this software and associated documentation | |
# files (the "Software"), to deal in the Software without restriction, | |
# including without limitation the rights to use, copy, modify, merge, | |
# publish, distribute, sublicense, and/or sell copies of the Software, | |
# and to permit persons to whom the Software is furnished to do so, | |
# subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be | |
# included in all copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES | |
# OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT | |
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, | |
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | |
# DEALINGS IN THE SOFTWARE. | |
# Note: This sample requires Py-EC (https://github.com/jesperborgstrup/py-ec) to work. | |
import hashlib | |
import time | |
from random import randint | |
from echelper import ECHelper | |
from curve import Curve | |
from keypair import KeyPair | |
CURVE = "secp256k1" | |
KEY_COUNT = 10000 | |
DEBUG = False | |
def sign(curve, keys, signer_index, message="Hello message"): | |
key_count = len( keys ) | |
# Set signer | |
signer = keys[signer_index] | |
# Make room for c_i, s_i, z'_i, and z''_i variables | |
cs = [0] * key_count | |
ss = [0] * key_count | |
z_s = [0] * key_count | |
z__s = [0] * key_count | |
# Retrieve all public keys and their coordinates | |
public_keys = map( lambda key: key.public_key, keys ) | |
public_keys_coords = map( lambda point: (point.x, point.y), public_keys ) | |
# Step 1 | |
public_keys_hash = curve.hash_to_field( "%s" % public_keys_coords ) | |
H = H2( curve, public_keys_coords ) | |
Y_tilde = signer.private_key * H | |
# Step 2 | |
u = randint( 0, curve.order ) | |
pi_plus_1 = (signer_index+1) % key_count | |
cs[pi_plus_1] = H1( curve, public_keys_hash, Y_tilde, message, | |
u * curve.G, u * H ) | |
# Step 3 | |
for i in range( signer_index+1, key_count ) + range( signer_index ): | |
ss[i] = randint( 0, curve.order ) | |
next_i = (i+1) % key_count | |
z_s[i] = ss[i] * curve.G + cs[i] * public_keys[i] | |
z__s[i] = ss[i] * H + cs[i] * Y_tilde | |
cs[next_i] = H1( curve, public_keys_hash, Y_tilde, message, z_s[i], z__s[i] ) | |
# Step 4 | |
ss[signer_index] = ( u - signer.private_key * cs[signer_index] ) % curve.order | |
if DEBUG: | |
print "SIGN H: %s" % H | |
print "SIGN Y_tilde: %s" % Y_tilde | |
for i in range( len( cs ) ): | |
print "SIGN c_%d: %d" % ( i, cs[i] ) | |
print "SIGN s_%d: %d" % ( i, ss[i] ) | |
if z_s[i] != 0: | |
print "SIGN Z_%d: %s" % ( i, z_s[i] ) | |
if z__s[i] != 0: | |
print "SIGN Z__%d: %s" % ( i, z__s[i] ) | |
print "-----------------------------------------" | |
return ( public_keys, | |
message, | |
cs[0], | |
ss, | |
Y_tilde | |
) | |
def verify( curve, public_keys, message, c_0, ss, Y_tilde ): | |
public_keys_coords = map( lambda point: ( point.x, point.y ) , public_keys ) | |
n = len( public_keys ) | |
cs = [c_0] + [0] * ( n - 1 ) | |
z_s = [0] * n | |
z__s = [0] * n | |
# Step 1 | |
public_keys_hash = curve.hash_to_field( "%s" % public_keys_coords ) | |
H = H2( curve, public_keys_coords ) | |
for i in range( n ): | |
z_s[i] = ss[i] * curve.G + cs[i] * public_keys[i] | |
z__s[i] = ss[i] * H + cs[i] * Y_tilde | |
if i < n - 1: | |
cs[i+1] = H1( curve, public_keys_hash, Y_tilde, message, z_s[i], z__s[i] ) | |
H1_ver = H1( curve, public_keys_hash, Y_tilde, message, z_s[n-1], z__s[n-1] ) | |
if DEBUG: | |
print "VERIFY H: %s" % H | |
for i in range( len( cs ) ): | |
print "VERIFY c_%d: %d" % ( i, cs[i] ) | |
print "VERIFY s_%d: %d" % ( i, ss[i] ) | |
print "VERIFY Z_%d: %s" % ( i, z_s[i] ) | |
print "VERIFY Z__%d: %s" % ( i, z__s[i] ) | |
print "-----------------------------------------" | |
print "VERIFY H1_ver==c_0: (%d == %d)" % ( H1_ver, cs[0] ) | |
return cs[0] == H1_ver | |
def H2( curve, in_str ): | |
""" | |
Hash the input as a string and return the hash as an integer. | |
""" | |
return curve.hash_to_point( "H2_salt%s" % in_str ) | |
def H1( curve, keys, Y_tilde, message, P1, P2): | |
""" | |
The H1 function that hashes a lot of variables | |
and returns the hash as an integer. | |
""" | |
str = "%s,%s,%s,%X,%X,%X,%X" % ( keys, Y_tilde, message, | |
P1.x, P1.y, P2.x, P2.y) | |
return curve.hash_to_field( "H1_salt%s" % str ) | |
def get_signature_size( signature ): | |
public_keys, message, c_0, ss, Y_tilde = signature | |
# Each public key is 64 bytes (32 bytes per coordinate) | |
size = 64 * len( public_keys ) | |
size += len( ECHelper.int2bin( c_0 ) ) | |
size += sum( map( lambda s: len( ECHelper.int2bin( s ) ), ss ) ) | |
# Y_tilde is also a point, which again requires 64 bytes | |
size += 64 | |
return size | |
def run_test( curve, keys, signer_index ): | |
signature = sign( curve, keys, signer_index ) | |
assert verify( curve, *signature ) | |
return get_signature_size( signature ) | |
def run_multiple_tests( curve, keys, signer_index=0, tests=1 ): | |
t_start = time.time() | |
size = sum( map( lambda _: run_test( curve, keys, signer_index ), range( tests ) ) ) | |
t_end = time.time() | |
t = t_end - t_start | |
print "Signing and verifying %d messages with %d keys took %.3f seconds (%.3f s/msg, %.3f ms/msg/key)" \ | |
% ( tests, len( keys ), t, t / tests, 1000 * t / tests / len( keys ) ) | |
print "The %d signatures were %d bytes in total (%.3f b/test, %.3f b/test/key)" % ( tests, size, float(size) / tests, float(size) / tests / len(keys) ) | |
return ( len( keys ), tests, t, size ) | |
def run(): | |
curve = Curve( CURVE ) | |
# Generate private/public key pairs | |
print "Generating %d key pairs..." % KEY_COUNT | |
t = time.time() | |
key_gen_time = keys = map( lambda _: KeyPair( curve ), range( KEY_COUNT ) ) | |
print "Generating %d key pairs took %.3f seconds" % ( KEY_COUNT, time.time() - t ) | |
results = [] | |
for i in [ 2, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500, 1000, 2000, 3000, 5000, 10000]: | |
results.append( run_multiple_tests( curve, keys[0:i], tests=10 ) ) | |
print repr( results ) | |
if __name__ == "__main__": | |
run() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment