Created
October 29, 2021 19:39
-
-
Save smartalecH/e2e84d5f5b806a52582ba9dabc841c4f to your computer and use it in GitHub Desktop.
Simple script to test if the damping gradients are correct.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import meep as mp | |
try: | |
import meep.adjoint as mpa | |
except: | |
import adjoint as mpa | |
import numpy as np | |
from autograd import numpy as npa | |
from autograd import tensor_jacobian_product | |
from enum import Enum | |
from matplotlib import pyplot as plt | |
resolution = 20 | |
silicon = mp.Medium(epsilon=12) | |
sxy = 5.0 | |
cell_size = mp.Vector3(sxy,sxy,0) | |
dpml = 1.0 | |
boundary_layers = [mp.PML(thickness=dpml)] | |
eig_parity = mp.EVEN_Y + mp.ODD_Z | |
dx = 1.5 | |
dy = 2.0 | |
design_region_size = mp.Vector3(dx,dy) | |
design_region_resolution = int(2*resolution) | |
Nx = int(design_region_resolution*design_region_size.x) + 1 | |
Ny = int(design_region_resolution*design_region_size.y) + 1 | |
## ensure reproducible results | |
np.random.seed(314159) | |
## random design region | |
p = np.random.rand(Nx*Ny) | |
x = np.arange(Nx) - int(Nx/2) | |
y = np.arange(Ny) - int(Ny/2) | |
X, Y = np.meshgrid(x,y) | |
Z = np.zeros((Nx,Ny)) | |
mask = (np.abs(Y) <= 10) & (np.abs(X) <= int(1e10)) | |
deps = 1e-5 | |
dp = deps*np.random.rand(Nx*Ny) | |
w = 1.0 | |
waveguide_geometry = [mp.Block(material=silicon, | |
center=mp.Vector3(), | |
size=mp.Vector3(mp.inf,w,mp.inf))] | |
fcen = 1/1.55 | |
df = 0.23*fcen | |
mode = 1 | |
sources = [mp.EigenModeSource(src=mp.GaussianSource(fcen,fwidth=df), | |
center=mp.Vector3(-0.5*sxy+dpml+0.1,0), | |
size=mp.Vector3(0,sxy-2*dpml), | |
eig_band=mode, | |
eig_parity=eig_parity)] | |
matgrid = mp.MaterialGrid(mp.Vector3(Nx,Ny), | |
mp.air, | |
silicon, | |
grid_type='U_MEAN', | |
damping=2, | |
weights=np.ones((Nx*Ny,)), | |
do_averaging=False) | |
matgrid_region = mpa.DesignRegion(matgrid, | |
volume=mp.Volume(center=mp.Vector3(), | |
size=mp.Vector3(design_region_size.x,design_region_size.y,0))) | |
matgrid_geometry = [mp.Block(center=matgrid_region.center, | |
size=matgrid_region.size, | |
material=matgrid)] | |
matgrid_geometry += [mp.Block(center=matgrid_region.center, | |
size=matgrid_region.size, | |
material=matgrid,e2=mp.Vector3(y=-1))] | |
geometry = waveguide_geometry + matgrid_geometry | |
sim = mp.Simulation(resolution=resolution, | |
cell_size=cell_size, | |
boundary_layers=boundary_layers, | |
sources=sources, | |
geometry=geometry) | |
frequencies = [fcen] | |
obj_list = [mpa.EigenmodeCoefficient(sim, | |
mp.Volume(center=mp.Vector3(0.5*sxy-dpml-0.1), | |
size=mp.Vector3(0,sxy-2*dpml,0)), | |
mode, | |
eig_parity=eig_parity)] | |
def J(mode_mon): | |
return npa.power(npa.abs(mode_mon),2) | |
opt = mpa.OptimizationProblem( | |
simulation=sim, | |
objective_functions=J, | |
objective_arguments=obj_list, | |
design_regions=[matgrid_region], | |
frequencies=frequencies) | |
def mapping(x,filter_radius): | |
filtered_field = mpa.conic_filter(x, | |
filter_radius, | |
design_region_size.x, | |
design_region_size.y, | |
design_region_resolution) | |
return filtered_field.flatten() | |
filter_radius = 0.1 | |
beta = 0 | |
opt.update_design([mapping(p,filter_radius)]) | |
f, adjsol_grad = opt() | |
if np.asarray(frequencies).size > 1: | |
bp_adjsol_grad = np.zeros(adjsol_grad.shape) | |
for i in range(len(frequencies)): | |
bp_adjsol_grad[:,i] = tensor_jacobian_product(mapping,0)(p,filter_radius,adjsol_grad[:,i]) | |
else: | |
bp_adjsol_grad = tensor_jacobian_product(mapping,0)(p,filter_radius,adjsol_grad) | |
if bp_adjsol_grad.ndim < 2: | |
bp_adjsol_grad = np.expand_dims(bp_adjsol_grad,axis=1) | |
bp_adjsol_grad_m = (dp[None,:]@bp_adjsol_grad).flatten() | |
opt.update_design([mapping(p+dp/2,filter_radius)]) | |
f_pp, _ = opt(need_gradient=False) | |
opt.update_design([mapping(p-dp/2,filter_radius)]) | |
f_pm, _ = opt(need_gradient=False) | |
fd_grad = f_pp-f_pm | |
rel_error = np.abs(bp_adjsol_grad_m-fd_grad) / np.abs(fd_grad) | |
print("Directional derivative -- adjoint solver: {}, FD: {}|| rel_error = {}".format(bp_adjsol_grad_m,fd_grad,rel_error)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment