Skip to content

Instantly share code, notes, and snippets.

@siraben
Last active May 19, 2021 06:55
Show Gist options
  • Save siraben/ee3f16bf501ab7ecb49d63ecd3a2d2b1 to your computer and use it in GitHub Desktop.
Save siraben/ee3f16bf501ab7ecb49d63ecd3a2d2b1 to your computer and use it in GitHub Desktop.
Mechanized proof of the Church-Rosser theorem
Set Warnings "-notation-overridden,-parsing,-deprecated-hint-without-locality".
Require Import Arith.
Import Nat.
Require Import Lia.
(** * Reflexive transitive closure of a relation *)
Definition relation (X : Type) := X -> X -> Prop.
Inductive multi {X : Type} (R : relation X) : relation X :=
| multi_refl : forall (x : X), multi R x x
| multi_step : forall (x y z : X),
R x y ->
multi R y z ->
multi R x z.
Hint Constructors multi : core.
Theorem multi_R : forall (X : Type) (R : relation X) (x y : X),
R x y -> (multi R) x y.
Proof.
econstructor; eauto.
Qed.
Theorem multi_trans :
forall (X : Type) (R : relation X) (x y z : X),
multi R x y ->
multi R y z ->
multi R x z.
Proof.
intros X R x y z G H.
induction G; auto; econstructor; eauto.
Qed.
(* Reference: Types and Programming Languages, Benjamin Pierce, Chapter 6 *)
(** * Untyped lambda calculus with de Bruijn indices *)
Inductive dexp : Type :=
| d_var : nat -> dexp
| d_abs : dexp -> dexp
| d_app : dexp -> dexp -> dexp.
(** ** Custom syntax *)
Declare Custom Entry dexp.
Notation "<{ e }>" := e (e custom dexp at level 99).
Notation "( x )" := x (in custom dexp, x at level 99).
Notation "x" := x (in custom dexp at level 0, x constr at level 0).
Notation "x y" := (d_app x y) (in custom dexp at level 1, left associativity).
Notation "\, y" :=
(d_abs y) (in custom dexp at level 90, y custom dexp at level 99,
left associativity).
Coercion d_var : nat >-> dexp.
(** ** Identity function *)
Check <{\, 0}>.
Inductive nterm : nat -> dexp -> Prop :=
| nterm_var : forall n k, k < n -> nterm n k
| nterm_abs : forall n t1, nterm (S n) t1 -> nterm n <{\, t1 }>
| nterm_app : forall n t1 t2, nterm n t1 -> nterm n t2 -> nterm n <{t1 t2}>.
(** ** Shifting *)
(* d-place shift of a term t above cutoff c *)
Fixpoint shift (d c : nat) (t : dexp) : dexp :=
match t with
| d_var k => match compare c k with
| Lt => k + d
| Eq => k + d
| Gt => k
end
| <{\, t1}> => d_abs (shift d (S c) t1)
| <{t1 t2}> => d_app (shift d c t1) (shift d c t2)
end.
Eval compute in shift 0 2 <{\, \, 1 (0 2) }>.
Eval compute in shift 0 2 <{\, 0 1 (\, 0 1 2) }>.
Ltac solve_compare :=
repeat match goal with
| [ |- context [ match ?x ?= ?y with _ => _ end ] ] =>
destruct (compare_spec x y); simpl; auto; try lia
end.
Theorem ex_6_2_3 :
forall t n d c, nterm n t -> nterm (n + d) (shift d c t).
Proof.
intros t n d c H.
generalize dependent d.
generalize dependent c.
induction H; intros c d; simpl.
- solve_compare; constructor; try lia.
- simpl in IHnterm.
constructor; auto.
- constructor; auto.
Qed.
(** ** Lifting *)
(* However, lifting works better in Coq. *)
(* lift shifts all the free variables over by 1 *)
Fixpoint lift (k : nat) (t : dexp) :=
match t with
| d_var i => match compare k i with
| Lt => d_var (S i)
| Eq => d_var (S i)
| Gt => d_var i
end
| d_abs t' => d_abs (lift (S k) t')
| d_app t1 t2 => d_app (lift k t1) (lift k t2)
end.
(* Showing that lift k and shift 1 k are equivalent *)
Theorem lift_shift_1 : forall k t, lift k t = shift 1 k t.
Proof.
intros k t0.
generalize dependent k.
induction t0; intros k; simpl.
- solve_compare; rewrite add_1_r; auto.
- congruence.
- congruence.
Qed.
(** ** Substitution *)
Reserved Notation "'[' j '/' s ']' t" (in custom dexp at level 20, j constr).
Fixpoint substX (j : nat) (s : dexp) (t : dexp) : dexp :=
match t with
| d_var k => match compare k j with
| Eq => s
| Lt => t
| Gt => d_var (pred k)
end
| d_abs t1 => d_abs (substX (S j) (lift 0 s) t1)
| d_app t1 t2 => d_app (substX j s t1) (substX j s t2)
end
where "'[' j '/' s ']' t" := (substX j s t) (in custom dexp).
Example ex1 : substX 0 <{\, 0}> <{1 0 2}> = <{ 0 (\, 0) 1 }>.
Proof.
simpl. reflexivity.
Qed.
Theorem ex_6_2_6 :
forall (n j : nat) (s t : dexp),
nterm n s -> nterm n t -> j <= n -> nterm n (substX j s t).
Proof.
intros n j s t H H0 H1.
generalize dependent j.
generalize dependent s.
induction H0; intros s Hs j Hj; simpl.
- destruct (k ?= j); try constructor; auto.
lia.
- constructor.
apply IHnterm; try lia.
rewrite lift_shift_1.
replace (S n) with (n + 1) by lia.
apply ex_6_2_3; auto.
- constructor; auto.
Qed.
(** ** Values **)
Inductive value : dexp -> Prop :=
| v_abs : forall t1, value <{\, t1}>.
Hint Constructors value : core.
(** ** Reduction **)
Reserved Notation "t '-->' t'" (at level 40).
Inductive step : dexp -> dexp -> Prop :=
| E_app1 : forall t1 t1' t2,
t1 --> t1' ->
<{t1 t2}> --> <{t1' t2}>
| E_app2 : forall t1 t2 t2',
t2 --> t2' ->
<{t1 t2}> --> <{t1 t2'}>
| E_AppAbs : forall t2 t1,
<{(\, t2) t1}> --> substX 0 t1 t2
| E_abs : forall t1 t1',
t1 --> t1' ->
<{\, t1 }> --> <{\, t1'}>
where "t '-->' t'" := (step t t').
Hint Constructors step : core.
Notation multistep := (multi step).
Notation "t1 '-->>' t2" := (multistep t1 t2) (at level 40).
Hint Resolve multi_refl : core.
Theorem multistep_cong1 :
forall M M' N, M -->> M' -> <{M N}> -->> <{M' N}>.
Proof.
intros M M' N H.
generalize dependent N.
induction H; intros N.
- econstructor.
- eapply multi_trans; eauto with nocore.
econstructor; econstructor; eauto.
Qed.
Theorem multistep_cong2 :
forall M N N', N -->> N' -> <{M N}> -->> <{M N'}>.
Proof.
intros M N N' H.
generalize dependent M.
induction H; intros M.
- econstructor.
- eapply multi_trans; eauto with nocore.
eapply multi_step; eauto.
Qed.
Theorem multistep_abs :
forall M M', M -->> M' -> <{\, M}> -->> <{\, M'}>.
Proof.
intros M M' H.
induction H.
- econstructor.
- eapply multi_trans; eauto with nocore.
eapply multi_step; eauto.
Qed.
Hint Resolve multistep_cong1 : core.
Hint Resolve multistep_cong2 : core.
Hint Resolve multistep_abs : core.
(* https://www.irif.fr/~mellies/mpri/mpri-ens/biblio/Selinger-Lambda-Calculus-Notes.pdf *)
Definition confluence {X} (R : relation X) :=
forall M N P, (multi R) M N ->
(multi R) M P ->
exists Z, (multi R) N Z /\ (multi R) P Z.
Definition church_rosser_stmt := confluence step.
(* property b *)
Definition property_b {X} (R : relation X) :=
forall M N P, R M N -> R M P -> exists Z, (multi R) N Z /\ (multi R) P Z.
(* diamond property of a relation *)
Definition diamond_property {X} (R : relation X) :=
forall M N P, R M N -> R M P -> exists Z, R N Z /\ R P Z.
Lemma prop_c_1 {X} :
forall (R : relation X), diamond_property R ->
forall M N P, (multi R) M N -> R M P -> exists Z, (multi R) N Z /\ (multi R) P Z.
Proof.
intros R H M N P H0 H1.
generalize dependent P.
induction H0; intros P MP.
- exists P; eauto.
- rename z into G.
pose proof (H _ _ _ H0 MP).
destruct H2 as [z [Hz Hz1]].
apply IHmulti in Hz.
destruct Hz as [Z [GZ zZ]].
exists Z; eauto.
Qed.
Lemma diamond_property_implies_confluence {X} :
forall (R : relation X), diamond_property R -> confluence R.
Proof.
intros R H. unfold diamond_property, confluence.
intros M N P MN NP.
generalize dependent P.
induction MN; intros P HP.
- exists P; auto.
- rename z into g.
pose proof (prop_c_1 R H _ _ _ HP H0).
destruct H1 as [Z [PZ yZ]].
apply IHMN in yZ.
destruct yZ as [Z0 [gZ0 ZZ0]].
exists Z0; split.
+ assumption.
+ eapply multi_trans; eauto.
Qed.
Lemma diamond_property_implies_church_rosser :
diamond_property step -> church_rosser_stmt.
Proof.
apply diamond_property_implies_confluence.
Qed.
Reserved Notation "t '|>' t'" (at level 40).
(** *Parallel one-step reduction **)
Inductive Pstep : dexp -> dexp -> Prop :=
| PE_var : forall (x : nat), x |> x
| PE_app : forall P P' N N',
P |> P' ->
N |> N' ->
<{P N}> |> <{P' N'}>
| PE_abs : forall N N',
N |> N' ->
<{\, N }> |> <{\, N' }>
| PE_AppAbs : forall Q Q' N N',
Q |> Q' ->
N |> N' ->
<{(\, Q) N}> |> substX 0 N' Q'
where "t '|>' t'" := (Pstep t t').
Hint Constructors Pstep : core.
Lemma Pstep_refl : forall (P : dexp), P |> P.
Proof.
induction P; auto.
Qed.
Hint Resolve Pstep_refl : core.
Lemma lem_4_6_a : forall M M', M --> M' -> M |> M'.
Proof.
intros M M' H.
induction H; auto.
Qed.
Lemma lem_4_6_b : forall (M M' : dexp), M |> M' -> M -->> M'.
Proof.
intros M M' H.
induction H; auto.
- eapply multi_trans.
eauto using multistep_cong1 with nocore.
eauto using multistep_cong2 with nocore.
- apply multi_trans with (y := <{(\, Q) N'}>).
+ eapply multistep_cong2; eauto.
+ apply multi_trans with (y := <{ (\, Q') N' }>).
* eapply multistep_cong1; eauto.
* eapply multi_step; eauto.
Qed.
Lemma lem_4_6_c : forall (M M' : dexp), M -->> M' <-> (multi Pstep) M M'.
Proof.
intros M M'; split; intros H.
- induction H; auto.
econstructor.
apply lem_4_6_a.
apply H.
assumption.
- induction H; auto.
eapply lem_4_6_b in H.
eapply multi_trans; eauto.
Qed.
Lemma lift_lift : forall M n m,
n <= m -> lift n (lift m M) = lift (S m) (lift n M).
Proof.
induction M; intros n' m H; simpl.
- solve_compare; try lia.
destruct n; solve_compare; auto.
- rewrite IHM; try lia; auto.
- rewrite IHM1, IHM2; try lia; auto.
Qed.
Lemma lift_subst : forall M N n m,
lift (n + m) (substX n N M) = substX n (lift (n + m) N) (lift (n + S m) M).
Proof with auto.
induction M; intros N n' m; simpl.
- solve_compare; destruct n, n'; solve_compare; try lia; auto.
- change (S (n' + m)) with (S n' + m).
rewrite IHM.
rewrite (lift_lift _ 0 (n' + m)); auto with arith.
- congruence.
Qed.
Lemma subst_skip : forall M N m, M = substX m N (lift m M).
Proof.
intros M.
induction M; intros N m; simpl.
- solve_compare; destruct m; auto; solve_compare.
- congruence.
- congruence.
Qed.
Lemma subst_avoid : forall M N m n,
n >= m ->
substX (S n) (lift m M) (lift m N) = lift m (substX n M N).
Proof with auto.
intros M N m n H.
revert m n H M.
induction N; intros m n' H M; simpl.
- solve_compare; destruct n; try lia...
- rewrite <- IHN by lia.
rewrite lift_lift by lia...
- rewrite IHN1, IHN2...
Qed.
Lemma subst_subst : forall N1 N2 M n m,
substX (n + m) N1 (substX m N2 M)
= substX m (substX (n + m) N1 N2) (substX (n + S m) (lift m N1) M).
Proof with auto.
intros N1 N2 M n m.
revert n m N1 N2.
induction M; intros n' m N1 N2; simpl.
- solve_compare; apply subst_skip.
- replace (S (n' + m)) with (n' + S m)...
replace (S (n' + S m)) with (n' + S (S m))...
rewrite lift_lift by lia.
rewrite <- subst_avoid by lia.
rewrite plus_n_Sm.
rewrite IHM...
- congruence.
Qed.
Lemma lift_par :
forall M M', M |> M' -> forall m, lift m M |> lift m M'.
Proof.
intros M M' H.
induction H; intros m; simpl; auto.
- change (S m) with (0 + S m).
change m with (0 + m) at 3.
rewrite lift_subst.
auto.
Qed.
Lemma subst_par1 :
forall M M' N, M |> M' -> forall n, substX n M N |> substX n M' N.
Proof with auto.
intros M M' N H.
generalize dependent M.
generalize dependent M'.
induction N; intros M' M H n'; simpl...
- destruct (_ ?= _)...
- pose proof lift_par...
Qed.
Lemma subst_par :
forall M M' N N' n, M |> M' -> N |> N' -> substX n M N |> substX n M' N'.
Proof with auto.
intros M M' N N' n HM HN.
generalize dependent M.
generalize dependent M'.
generalize dependent n.
induction HN; intros n M' M HM; simpl...
- destruct (_ ?= _)...
- auto using lift_par.
- epose proof (subst_subst _ _ _ n 0).
rewrite add_0_r, add_1_r in H.
rewrite H.
constructor; auto using lift_par.
Qed.
(* Lemma 4.7: Substitution lemma *)
Lemma lem_4_7 :
forall M M' U U' n, M |> M' -> U |> U' -> substX n U M |> substX n U' M'.
Proof.
intros M M' U U' n H H0.
apply subst_par; auto.
Qed.
(* Maximum parallel one-step reduct M* of term M *)
Fixpoint max_par_redex t : dexp :=
match t with
| d_var _ => t
| d_app (d_abs t1) t2 =>
substX 0 (max_par_redex t2) (max_par_redex t1)
| d_app t1 t2 => d_app (max_par_redex t1) (max_par_redex t2)
| d_abs t' => d_abs (max_par_redex t')
end.
Lemma lem_4_8 : forall M M', M |> M' -> M' |> max_par_redex M.
Proof.
intros M M' H.
induction H; simpl; auto.
- destruct P; auto.
inversion H; subst.
inversion IHPstep1; auto.
- apply lem_4_7; auto.
Qed.
Lemma diamond_property_of_pstep : diamond_property Pstep.
Proof.
intros M N P MN MP.
exists (max_par_redex M).
split; apply lem_4_8; auto.
Qed.
Theorem church_rosser : church_rosser_stmt.
Proof.
assert (diamond_property (multi Pstep)).
{
pose proof (diamond_property_implies_confluence _ diamond_property_of_pstep).
assumption.
}
assert (diamond_property (multi step)).
{
intros M N P MN MP.
rewrite lem_4_6_c in *.
pose proof (H _ _ _ MN MP).
destruct H0 as [Z [NZ PZ]].
exists Z; split; rewrite lem_4_6_c; assumption.
}
assumption.
Qed.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment