Skip to content

Instantly share code, notes, and snippets.

@sdewaele
Forked from matthiasschabel/expm.jl
Last active February 28, 2019 16:30
Show Gist options
  • Save sdewaele/2c176cb634280cf8a23c5970739cea0e to your computer and use it in GitHub Desktop.
Save sdewaele/2c176cb634280cf8a23c5970739cea0e to your computer and use it in GitHub Desktop.
Julia translation of MATLAB expm function (matrix exponential) and test code in Julia and MATLAB
using LinearAlgebra
import Base.exp
import LinearAlgebra.exp!
function expmchk()
# EXPMCHK Check the class of input A and
# initialize M_VALS and THETA accordingly.
m_vals = [3 5 7 9 13];
# theta_m for m=1:13.
theta = [#3.650024139523051e-008
#5.317232856892575e-004
1.495585217958292e-002 # m_vals = 3
#8.536352760102745e-002
2.539398330063230e-001 # m_vals = 5
#5.414660951208968e-001
9.504178996162932e-001 # m_vals = 7
#1.473163964234804e+000
2.097847961257068e+000 # m_vals = 9
#2.811644121620263e+000
#3.602330066265032e+000
#4.458935413036850e+000
5.371920351148152e+000];# m_vals = 13
return m_vals, theta
end
function getPadeCoefficients(m)
# GETPADECOEFFICIENTS Coefficients of numerator P of Pade approximant
# C = GETPADECOEFFICIENTS returns coefficients of numerator
# of [M/M] Pade approximant, where M = 3,5,7,9,13.
if (m==3)
c = [120, 60, 12, 1];
elseif (m==5)
c = [30240, 15120, 3360, 420, 30, 1];
elseif (m==7)
c = [17297280, 8648640, 1995840, 277200, 25200, 1512, 56, 1];
elseif (m==9)
c = [17643225600, 8821612800, 2075673600, 302702400, 30270240,
2162160, 110880, 3960, 90, 1];
elseif (m==13)
c = [64764752532480000, 32382376266240000, 7771770303897600,
1187353796428800, 129060195264000, 10559470521600,
670442572800, 33522128640, 1323241920,
40840800, 960960, 16380, 182, 1];
end
return c
end
function PadeApproximantOfDegree(A,m)
#PADEAPPROXIMANTOFDEGREE Pade approximant to exponential.
# F = PADEAPPROXIMANTOFDEGREE(M) is the degree M diagonal
# Pade approximant to EXP(A), where M = 3, 5, 7, 9 or 13.
# Series are evaluated in decreasing order of powers, which is
# in approx. increasing order of maximum norms of the terms.
n = maximum(size(A));
c = getPadeCoefficients(m);
# Evaluate Pade approximant.
if (m == 13)
# For optimal evaluation need different formula for m >= 12.
A2 = A*A
A4 = A2*A2
A6 = A2*A4
U = A * (A6*(c[14]*A6 + c[12]*A4 + c[10]*A2) + c[8]*A6 + c[6]*A4 + c[4]*A2 + c[2]*Matrix{Float64}(I,n,n) )
V = A6*(c[13]*A6 + c[11]*A4 + c[9]*A2) + c[7]*A6 + c[5]*A4 + c[3]*A2 + c[1]*Matrix{Float64}(I,n,n)
F = (V-U)\(V+U)
else # m == 3, 5, 7, 9
Apowers = Array{Matrix{Float64}}(undef,ceil(Int,(m+1)/2))
Apowers[1] = Matrix{Float64}(I,n,n)
Apowers[2] = A*A
for j = 3:ceil(Int,(m+1)/2)
Apowers[j] = Apowers[j-1]*Apowers[2]
end
U = zeros(n,n)
V = zeros(n,n)
for j = m+1:-2:2
U = U + c[j]*Apowers[convert(Int,j/2)]
end
U = A*U
for j = m:-2:1
V = V + c[j]*Apowers[convert(Int,(j+1)/2)]
end
F = (V-U)\(V+U)
end
return F
end
function expm(A)
# EXPM Matrix exponential.
# EXPM(X) is the matrix exponential of X. EXPM is computed using
# a scaling and squaring algorithm with a Pade approximation.
#
# Julia implementation closely based on MATLAB code by Nicholas Higham
#
# Initialization
m_vals, theta = expmchk()
normA = norm(A,1)
if normA <= theta[end]
# no scaling and squaring is required.
for i = 1:length(m_vals)
if normA <= theta[i]
F = PadeApproximantOfDegree(A,m_vals[i])
break
end
end
else
t,s = frexp(normA/theta[end])
s = s - (t == 0.5) # adjust s if normA/theta(end) is a power of 2.
A = A/2^s # Scaling
F = PadeApproximantOfDegree(A,m_vals[end])
for i = 1:s
F = F*F # Squaring
end
end
return F
end # expm
exp(x::Matrix{T}) where T<:Real = expm(x)
function exp!(x::Matrix{T}) where T<:Real
x[:] = expm(x)
end
L=[1 2 1 2 3 4 5 6 7 8 16 32 64 128 160 192 256 384 512]
t=zeros(size(L))
for j=1:length(L)
tic()
for i=1:100
A=rand(L[j],L[j])
expm(A)
end
print("N = ",L[j]," ")
t[j]=toc()
end
L=[1 2 1 2 3 4 5 6 7 8 16 32 64 128 160 192 256 384 512];
t=zeros(size(L));
for j=1:length(L)
tic();
for i=1:100
A=rand(L(j),L(j));
expm(A);
end
t(j)=toc();
disp(['N = ' num2str(L(j)) ' elapsed time: ' num2str(t(j)) ' seconds']);
end
using Test
using LinearAlgebra
@testset "Matrix exponential" begin
@testset "Tests for $elty" for elty in (Float32, Float64, ComplexF32, ComplexF64,Real)
A1 = convert(Matrix{elty}, [4 2 0; 1 4 1; 1 1 4])
eA1 = convert(Matrix{elty}, [147.866622446369 127.781085523181 127.781085523182;
183.765138646367 183.765138646366 163.679601723179;
71.797032399996 91.8825693231832 111.968106246371]')
@test exp(A1) ≈ eA1
A2 = convert(Matrix{elty},
[29.87942128909879 0.7815750847907159 -2.289519314033932;
0.7815750847907159 25.72656945571064 8.680737820540137;
-2.289519314033932 8.680737820540137 34.39400925519054])
eA2 = convert(Matrix{elty},
[ 5496313853692458.0 -18231880972009236.0 -30475770808580460.0;
-18231880972009252.0 60605228702221920.0 101291842930249760.0;
-30475770808580480.0 101291842930249728.0 169294411240851968.0])
@test exp(A2) ≈ eA2
A3 = convert(Matrix{elty}, [-131 19 18;-390 56 54;-387 57 52])
eA3 = convert(Matrix{elty}, [-1.50964415879218 -5.6325707998812 -4.934938326092;
0.367879439109187 1.47151775849686 1.10363831732856;
0.135335281175235 0.406005843524598 0.541341126763207]')
@test exp(A3) ≈ eA3
A4 = convert(Matrix{elty}, [0.25 0.25; 0 0])
eA4 = convert(Matrix{elty}, [1.2840254166877416 0.2840254166877415; 0 1])
@test exp(A4) ≈ eA4
A5 = convert(Matrix{elty}, [0 0.02; 0 0])
eA5 = convert(Matrix{elty}, [1 0.02; 0 1])
@test exp(A5) ≈ eA5
# Hessenberg
@test hessenberg(A1).H ≈ convert(Matrix{elty},
[4.000000000000000 -1.414213562373094 -1.414213562373095
-1.414213562373095 4.999999999999996 -0.000000000000000
0 -0.000000000000002 3.000000000000000])
end
end
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment