Created
February 25, 2021 11:48
-
-
Save rexlow/b4bce3c91db3f3c036b1f339f8085c79 to your computer and use it in GitHub Desktop.
A quick and dirty implementation of GAN network in PyTorch that approximates a gaussian distribution
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/python3 | |
# Sample GAN implementation for learning purposes only | |
# The network will model 2 different dataset of different distribution and | |
# train Generator to approximate the Distributor's distribution better | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
# load ui libs | |
seaborn_available, matplotlib_available = True, True | |
try: | |
import seaborn as sns | |
except ImportError: | |
seaborn_available = False | |
try: | |
import matplotlib as mpl | |
import matplotlib.pyplot as plt | |
mpl.use('tkagg') # fix possible segfault in macos | |
except ImportError: | |
matplotlib_available = False | |
# cuda | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
# target distribution | |
mean, stddev = 4, 1.25 | |
# hyperparameters | |
g_in_size = 1 | |
g_hidden_size = 10 # generator complexity | |
g_out_size = 1 | |
d_in_size = 500 | |
d_hidden_size = 20 # discriminator complexity | |
d_out_size = 1 # binary output, either true or false | |
minibatch_size = d_in_size | |
g_learning_rate = 1e-3 | |
d_learning_rate = 1e-3 | |
sgd_momentum = 0.9 | |
num_epochs = 10000 | |
num_steps = 20 | |
print_interval = 100 | |
# activation functions | |
g_act = torch.tanh | |
d_act = torch.sigmoid | |
# network | |
class Generator(nn.Module): | |
def __init__(self, in_features, hidden_features, out_features, f): | |
super(Generator, self).__init__() | |
self.m1 = nn.Linear(in_features, hidden_features) | |
self.m2 = nn.Linear(hidden_features, hidden_features) | |
self.m3 = nn.Linear(hidden_features, out_features) | |
self.f = f | |
def forward(self, x): | |
x = self.f(self.m1(x)) | |
x = self.f(self.m2(x)) | |
return self.m3(x) | |
class Discriminator(nn.Module): | |
def __init__(self, in_features, hidden_features, out_features, f): | |
super(Discriminator, self).__init__() | |
self.m1 = nn.Linear(in_features, hidden_features) | |
self.m2 = nn.Linear(hidden_features, hidden_features) | |
self.m3 = nn.Linear(hidden_features, out_features) | |
self.f = f | |
def forward(self, x): | |
x = self.f(self.m1(x)) | |
x = self.f(self.m2(x)) | |
return self.f(self.m3(x)) | |
def get_gaussian_distribution(mu, sigma): | |
return lambda n: torch.Tensor(np.random.normal(mu, sigma, (1, n))) | |
def get_uniform_distribution(): | |
return lambda m, n: torch.rand(m, n) | |
def tensor_to_list(v): | |
return v.data.storage().tolist() | |
def stats(d): | |
return [round(np.mean(d), 4), round(np.std(d), 4)] | |
def histplot(data, label="", bins=25): | |
if matplotlib_available: | |
ax = sns.histplot(data, label=label, bins=bins) | |
legend = plt.legend() | |
plt.show() | |
else: | |
print("Matplotlib not available") | |
if __name__ == "__main__": | |
D_sampler = get_gaussian_distribution(mean, stddev) # (1, 500) | |
G_sampler = get_uniform_distribution() # (500, 1) | |
# Uncomment to visualize input distribution | |
# if seaborn_available: | |
# histplot(D_sampler(d_in_size).numpy()[0], label="Exampel Discriminator Input") | |
# histplot(G_sampler(minibatch_size, g_in_size).numpy(), label="Exampel Generator Input") | |
G = Generator(g_in_size, g_hidden_size, g_out_size, g_act) | |
D = Discriminator(d_in_size, d_hidden_size, d_out_size, d_act) | |
G = G.to(device) | |
D = D.to(device) | |
# error rates | |
D_real_err_rate, D_fake_err_rate, G_err_rate = 0, 0, 0 | |
# loss & optimizers | |
criterion = nn.BCELoss() | |
G_optimizer = optim.SGD(G.parameters(), lr=g_learning_rate, momentum=sgd_momentum) | |
D_optimizer = optim.SGD(D.parameters(), lr=d_learning_rate, momentum=sgd_momentum) | |
for epoch in range(num_epochs): | |
for d_step in range(num_steps): | |
D.zero_grad() | |
# train real input on Discriminator | |
D_real_x = D_sampler(d_in_size).to(device) | |
D_real_y = D(D_real_x) | |
D_real_err = criterion(D_real_y, torch.ones([1, 1], device=device)) # 1 - true | |
D_real_err.backward() | |
# train fake input on Discriminator | |
D_fake_input = G_sampler(d_in_size, g_in_size).to(device) | |
D_fake_x = G(D_fake_input).detach() | |
D_fake_y = D(D_fake_x.t()) | |
D_fake_err = criterion(D_fake_y, torch.zeros([1, 1], device=device)) # 0 - fake | |
D_fake_err.backward() | |
D_optimizer.step() | |
# update discriminator error rates | |
D_real_err_rate = tensor_to_list(D_real_err)[0] | |
D_fake_err_rate = tensor_to_list(D_fake_err)[0] | |
# train Generator with the Discriminator's responses, but do not update Discriminator | |
for g_step in range(num_steps): | |
G.zero_grad() | |
G_input = G_sampler(minibatch_size, g_in_size).to(device) | |
G_fake_x = G(G_input) | |
G_fake_y = D(G_fake_x.t()) | |
G_err = criterion(G_fake_y, torch.ones([1, 1], device=device)) | |
G_err.backward() | |
G_optimizer.step() | |
G_err_rate = tensor_to_list(G_err)[0] | |
if epoch % print_interval == 0: | |
print(f"Epoch: {epoch} Loss (DRE, DFE, GE): {round(D_real_err_rate, 4)} {round(D_fake_err_rate, 4)} {round(G_err_rate, 4)} Dist (Real | Fake): {stats(tensor_to_list(D_real_x))} {stats(tensor_to_list(D_fake_x))}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment