Created
August 22, 2024 15:59
-
-
Save pamelafox/4bf2b3acc7614784aa4d488534d84711 to your computer and use it in GitHub Desktop.
Add embeddings to a PostgreSQL database table (Python/Psycopg2/pgvector)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import psycopg2 | |
import openai | |
import azure.identity | |
import numpy as np | |
from dotenv import load_dotenv | |
from pgvector.psycopg2 import register_vector | |
load_dotenv() | |
# Environment variables for database connection | |
DBUSER = os.environ["DBUSER"] | |
DBPASS = os.environ["DBPASS"] | |
DBHOST = os.environ["DBHOST"] | |
DBNAME = os.environ["DBNAME"] | |
# Use SSL if not connecting to localhost | |
DBSSL = "disable" | |
if DBHOST != "localhost": | |
DBSSL = "require" | |
# Connect to the PostgreSQL database | |
conn = psycopg2.connect(database=DBNAME, user=DBUSER, password=DBPASS, host=DBHOST, sslmode=DBSSL) | |
conn.autocommit = True | |
cur = conn.cursor() | |
# Enable pgvector extension | |
register_vector(conn) | |
cur.execute("CREATE EXTENSION IF NOT EXISTS vector") | |
# Add an embedding column to the table | |
# cur.execute("ALTER TABLE videos ADD COLUMN embedding vector(256)") | |
cur.execute("CREATE INDEX ON videos USING hnsw (embedding vector_l2_ops)") | |
# For each row in the table, compute an embedding using an embedding model | |
cur.execute("SELECT * FROM videos ORDER BY title DESC") | |
rows = cur.fetchall() | |
for row in rows: | |
if row[3] is not None: | |
continue | |
string_to_embed = row[0] + " " + row[1] | |
# Compute the embedding for the string | |
credential = azure.identity.DefaultAzureCredential() | |
token_provider = azure.identity.get_bearer_token_provider( | |
credential, "https://cognitiveservices.azure.com/.default" | |
) | |
client = openai.AzureOpenAI( | |
api_version="2024-03-01-preview", | |
azure_endpoint="https://cog-xw55anu4yrb3k.openai.azure.com", | |
azure_ad_token_provider=token_provider, | |
) | |
response = client.embeddings.create( | |
# Azure OpenAI takes the deployment name as the model name | |
model="emb3sm", | |
input=string_to_embed, | |
dimensions=256, | |
) | |
embedding = response.data[0].embedding | |
embedding = np.array(embedding) | |
# Update the row with the computed embedding | |
cur.execute("UPDATE videos SET embedding = %s WHERE id = %s", (embedding, row[0])) | |
print(f"Updated embedding for {row[1]}") | |
# Close the cursor and connection | |
cur.close() | |
conn.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment