Last active
June 30, 2019 14:37
-
-
Save onggunhao/9cb471aeac52643bd464e1830855ff2a to your computer and use it in GitHub Desktop.
A prototype implementation of excel's PMT function in Solidity, using the ABDKMath library for 64 bit fixed numbers. Verified to work with principal amounts with 18 decimals (e.g. Dai contract)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
pragma solidity ^0.5.7; | |
contract PMT { | |
using ABDKMath64x64 for uint128; | |
// rate is in basis points (0.5% = 50) | |
function pmt(int128 rate, uint256 numPayments, int128 principal) | |
public | |
returns (int128) | |
{ | |
// Step 1: Calculate normalized rate by converting basis point to decimal | |
int128 one64x64 = 0x10000000000000000; | |
int128 rateDivisor = 10000; | |
int128 rate64x64 = ABDKMath64x64.div(rate,rateDivisor); | |
// Step 2: Calculate Numerator | |
int128 numerator = ABDKMath64x64.mul(principal,rate64x64); | |
// Step 3: Calculate discount series | |
int128 discount = ABDKMath64x64.add(one64x64,rate64x64); | |
int128 inverseDiscount = ABDKMath64x64.div(one64x64,discount); | |
int128 series = ABDKMath64x64.pow(inverseDiscount,numPayments); | |
// Step 4: Denominator | |
int128 denominator = ABDKMath64x64.sub(one64x64,series); | |
// Step 5: Calculate PMT | |
int128 pmt = ABDKMath64x64.div(numerator,denominator); | |
// Step 4: Denominator | |
return pmt; | |
} | |
} | |
/* | |
* ABDK Math 64.64 Smart Contract Library. Copyright © 2019 by ABDK Consulting. | |
* Author: Mikhail Vladimirov <[email protected]> | |
*/ | |
/** | |
* Smart contract library of mathematical functions operating with signed | |
* 64.64-bit fixed point numbers. Signed 64.64-bit fixed point number is | |
* basically a simple fraction whose numerator is signed 128-bit integer and | |
* denominator is 2^64. As long as denominator is always the same, there is no | |
* need to store it, thus in Solidity signed 64.64-bit fixed point numbers are | |
* represented by int128 type holding only the numerator. | |
*/ | |
library ABDKMath64x64 { | |
/** | |
* Minimum value signed 64.64-bit fixed point number may have. | |
*/ | |
int128 private constant MIN_64x64 = -0x80000000000000000000000000000000; | |
/** | |
* Maximum value signed 64.64-bit fixed point number may have. | |
*/ | |
int128 private constant MAX_64x64 = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; | |
/** | |
* Convert signed 256-bit integer number into signed 64.64-bit fixed point | |
* number. Revert on overflow. | |
* | |
* @param x signed 256-bit integer number | |
* @return signed 64.64-bit fixed point number | |
*/ | |
function fromInt (int256 x) internal pure returns (int128) { | |
require (x >= -0x8000000000000000 && x <= 0x7FFFFFFFFFFFFFFF); | |
return int128 (x << 64); | |
} | |
/** | |
* Convert signed 64.64 fixed point number into signed 64-bit integer number | |
* rounding down. | |
* | |
* @param x signed 64.64-bit fixed point number | |
* @return signed 64-bit integer number | |
*/ | |
function toInt (int128 x) internal pure returns (int64) { | |
return int64 (x >> 64); | |
} | |
/** | |
* Convert unsigned 256-bit integer number into signed 64.64-bit fixed point | |
* number. Revert on overflow. | |
* | |
* @param x unsigned 256-bit integer number | |
* @return signed 64.64-bit fixed point number | |
*/ | |
function fromUInt (uint256 x) internal pure returns (int128) { | |
require (x <= 0x7FFFFFFFFFFFFFFF); | |
return int128 (x << 64); | |
} | |
/** | |
* Convert signed 64.64 fixed point number into unsigned 64-bit integer | |
* number rounding down. Revert on underflow. | |
* | |
* @param x signed 64.64-bit fixed point number | |
* @return unsigned 64-bit integer number | |
*/ | |
function toUInt (int128 x) internal pure returns (uint64) { | |
require (x >= 0); | |
return uint64 (x >> 64); | |
} | |
/** | |
* Convert signed 128.128 fixed point number into signed 64.64-bit fixed point | |
* number rounding down. Revert on overflow. | |
* | |
* @param x signed 128.128-bin fixed point number | |
* @return signed 64.64-bit fixed point number | |
*/ | |
function from128x128 (int256 x) internal pure returns (int128) { | |
int256 result = x >> 64; | |
require (result >= MIN_64x64 && result <= MAX_64x64); | |
return int128 (result); | |
} | |
/** | |
* Convert signed 64.64 fixed point number into signed 128.128 fixed point | |
* number. | |
* | |
* @param x signed 64.64-bit fixed point number | |
* @return signed 128.128 fixed point number | |
*/ | |
function to128x128 (int128 x) internal pure returns (int256) { | |
return int256 (x) << 64; | |
} | |
/** | |
* Calculate x + y. Revert on overflow. | |
* | |
* @param x signed 64.64-bit fixed point number | |
* @param y signed 64.64-bit fixed point number | |
* @return signed 64.64-bit fixed point number | |
*/ | |
function add (int128 x, int128 y) internal pure returns (int128) { | |
int256 result = int256(x) + y; | |
require (result >= MIN_64x64 && result <= MAX_64x64); | |
return int128 (result); | |
} | |
/** | |
* Calculate x - y. Revert on overflow. | |
* | |
* @param x signed 64.64-bit fixed point number | |
* @param y signed 64.64-bit fixed point number | |
* @return signed 64.64-bit fixed point number | |
*/ | |
function sub (int128 x, int128 y) internal pure returns (int128) { | |
int256 result = int256(x) - y; | |
require (result >= MIN_64x64 && result <= MAX_64x64); | |
return int128 (result); | |
} | |
/** | |
* Calculate x * y rounding down. Revert on overflow. | |
* | |
* @param x signed 64.64-bit fixed point number | |
* @param y signed 64.64-bit fixed point number | |
* @return signed 64.64-bit fixed point number | |
*/ | |
function mul (int128 x, int128 y) internal pure returns (int128) { | |
int256 result = int256(x) * y >> 64; | |
require (result >= MIN_64x64 && result <= MAX_64x64); | |
return int128 (result); | |
} | |
/** | |
* Calculate x * y rounding towards zero, where x is signed 64.64 fixed point | |
* number and y is signed 256-bit integer number. Revert on overflow. | |
* | |
* @param x signed 64.64 fixed point number | |
* @param y signed 256-bit integer number | |
* @return signed 256-bit integer number | |
*/ | |
function muli (int128 x, int256 y) internal pure returns (int256) { | |
if (x == MIN_64x64) { | |
require (y >= -0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF && | |
y <= 0x1000000000000000000000000000000000000000000000000); | |
return -y << 63; | |
} else { | |
bool negativeResult = false; | |
if (x < 0) { | |
x = -x; | |
negativeResult = true; | |
} | |
if (y < 0) { | |
y = -y; // We rely on overflow behavior here | |
negativeResult = !negativeResult; | |
} | |
uint256 absoluteResult = mulu (x, uint256 (y)); | |
if (negativeResult) { | |
require (absoluteResult <= | |
0x8000000000000000000000000000000000000000000000000000000000000000); | |
return -int256 (absoluteResult); // We rely on overflow behavior here | |
} else { | |
require (absoluteResult <= | |
0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); | |
return int256 (absoluteResult); | |
} | |
} | |
} | |
/** | |
* Calculate x * y rounding down, where x is signed 64.64 fixed point number | |
* and y is unsigned 256-bit integer number. Revert on overflow. | |
* | |
* @param x signed 64.64 fixed point number | |
* @param y unsigned 256-bit integer number | |
* @return unsigned 256-bit integer number | |
*/ | |
function mulu (int128 x, uint256 y) internal pure returns (uint256) { | |
if (y == 0) return 0; | |
require (x >= 0); | |
uint256 lo = (uint256 (x) * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) >> 64; | |
uint256 hi = uint256 (x) * (y >> 128); | |
require (hi <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); | |
hi <<= 64; | |
require (hi <= | |
0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF - lo); | |
return hi + lo; | |
} | |
/** | |
* Calculate x / y rounding towards zero. Revert on overflow or when y is | |
* zero. | |
* | |
* @param x signed 64.64-bit fixed point number | |
* @param y signed 64.64-bit fixed point number | |
* @return signed 64.64-bit fixed point number | |
*/ | |
function div (int128 x, int128 y) internal pure returns (int128) { | |
require (y != 0); | |
int256 result = (int256 (x) << 64) / y; | |
require (result >= MIN_64x64 && result <= MAX_64x64); | |
return int128 (result); | |
} | |
/** | |
* Calculate x / y rounding towards zero, where x and y are signed 256-bit | |
* integer numbers. Revert on overflow or when y is zero. | |
* | |
* @param x signed 256-bit integer number | |
* @param y signed 256-bit integer number | |
* @return signed 64.64-bit fixed point number | |
*/ | |
function divi (int256 x, int256 y) internal pure returns (int128) { | |
require (y != 0); | |
bool negativeResult = false; | |
if (x < 0) { | |
x = -x; // We rely on overflow behavior here | |
negativeResult = true; | |
} | |
if (y < 0) { | |
y = -y; // We rely on overflow behavior here | |
negativeResult = !negativeResult; | |
} | |
uint128 absoluteResult = divuu (uint256 (x), uint256 (y)); | |
if (negativeResult) { | |
require (absoluteResult <= 0x80000000000000000000000000000000); | |
return -int128 (absoluteResult); // We rely on overflow behavior here | |
} else { | |
require (absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); | |
return int128 (absoluteResult); // We rely on overflow behavior here | |
} | |
} | |
/** | |
* Calculate x / y rounding towards zero, where x and y are unsigned 256-bit | |
* integer numbers. Revert on overflow or when y is zero. | |
* | |
* @param x unsigned 256-bit integer number | |
* @param y unsigned 256-bit integer number | |
* @return signed 64.64-bit fixed point number | |
*/ | |
function divu (uint256 x, uint256 y) internal pure returns (int128) { | |
require (y != 0); | |
uint128 result = divuu (x, y); | |
require (result <= uint128 (MAX_64x64)); | |
return int128 (result); | |
} | |
/** | |
* Calculate -x. Revert on overflow. | |
* | |
* @param x signed 64.64-bit fixed point number | |
* @return signed 64.64-bit fixed point number | |
*/ | |
function neg (int128 x) internal pure returns (int128) { | |
require (x != MIN_64x64); | |
return -x; | |
} | |
/** | |
* Calculate |x|. Revert on overflow. | |
* | |
* @param x signed 64.64-bit fixed point number | |
* @return signed 64.64-bit fixed point number | |
*/ | |
function abs (int128 x) internal pure returns (int128) { | |
require (x != MIN_64x64); | |
return x < 0 ? -x : x; | |
} | |
/** | |
* Calculate 1 / x rounding towards zero. Revert on overflow or when x is | |
* zero. | |
* | |
* @param x signed 64.64-bit fixed point number | |
* @return signed 64.64-bit fixed point number | |
*/ | |
function inv (int128 x) internal pure returns (int128) { | |
require (x != 0); | |
int256 result = int256 (0x100000000000000000000000000000000) / x; | |
require (result >= MIN_64x64 && result <= MAX_64x64); | |
return int128 (result); | |
} | |
/** | |
* Calculate arithmetics average of x and y, i.e. (x + y) / 2 rounding down. | |
* | |
* @param x signed 64.64-bit fixed point number | |
* @param y signed 64.64-bit fixed point number | |
* @return signed 64.64-bit fixed point number | |
*/ | |
function avg (int128 x, int128 y) internal pure returns (int128) { | |
return int128 ((int256 (x) + int256 (y)) >> 1); | |
} | |
/** | |
* Calculate geometric average of x and y, i.e. sqrt (x * y) rounding down. | |
* Revert on overflow or in case x * y is negative. | |
* | |
* @param x signed 64.64-bit fixed point number | |
* @param y signed 64.64-bit fixed point number | |
* @return signed 64.64-bit fixed point number | |
*/ | |
function gavg (int128 x, int128 y) internal pure returns (int128) { | |
int256 m = int256 (x) * int256 (y); | |
require (m >= 0); | |
require (m < | |
0x4000000000000000000000000000000000000000000000000000000000000000); | |
return int128 (sqrtu (uint256 (m), uint256 (x) + uint256 (y) >> 1)); | |
} | |
/** | |
* Calculate x^y assuming 0^0 is 1, where x is signed 64.64 fixed point number | |
* and y is unsigned 256-bit integer number. Revert on overflow. | |
* | |
* @param x signed 64.64-bit fixed point number | |
* @param y uint256 value | |
* @return signed 64.64-bit fixed point number | |
*/ | |
function pow (int128 x, uint256 y) internal pure returns (int128) { | |
uint256 absoluteResult; | |
bool negativeResult = false; | |
if (x >= 0) { | |
absoluteResult = powu (uint256 (x) << 63, y); | |
} else { | |
// We rely on overflow behavior here | |
absoluteResult = powu (uint256 (uint128 (-x)) << 63, y); | |
negativeResult = y & 1 > 0; | |
} | |
absoluteResult >>= 63; | |
if (negativeResult) { | |
require (absoluteResult <= 0x80000000000000000000000000000000); | |
return -int128 (absoluteResult); // We rely on overflow behavior here | |
} else { | |
require (absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); | |
return int128 (absoluteResult); // We rely on overflow behavior here | |
} | |
} | |
/** | |
* Calculate sqrt (x) rounding down. Revert if x < 0. | |
* | |
* @param x signed 64.64-bit fixed point number | |
* @return signed 64.64-bit fixed point number | |
*/ | |
function sqrt (int128 x) internal pure returns (int128) { | |
require (x >= 0); | |
return int128 (sqrtu (uint256 (x) << 64, 0x10000000000000000)); | |
} | |
/** | |
* Calculate binary logarithm of x. Revert if x <= 0. | |
* | |
* @param x signed 64.64-bit fixed point number | |
* @return signed 64.64-bit fixed point number | |
*/ | |
function log_2 (int128 x) internal pure returns (int128) { | |
require (x > 0); | |
int128 a = 0; | |
int128 b = 126; | |
while (a < b) { | |
int128 m = a + b >> 1; | |
int128 t = x >> m; | |
if (t == 0) b = m - 1; | |
else if (t > 1) a = m + 1; | |
else { | |
a = m; | |
break; | |
} | |
} | |
int128 result = a - 64 << 64; | |
uint256 ux = uint256 (x) << 127 - a; | |
for (int128 bit = 0x8000000000000000; bit > 0; bit >>= 1) { | |
ux *= ux; | |
if (ux >= | |
0x8000000000000000000000000000000000000000000000000000000000000000) { | |
ux >>= 128; | |
result += bit; | |
} else ux >>= 127; | |
} | |
return result; | |
} | |
/** | |
* Calculate natural logarithm of x. Revert if x <= 0. | |
* | |
* @param x signed 64.64-bit fixed point number | |
* @return signed 64.64-bit fixed point number | |
*/ | |
function ln (int128 x) internal pure returns (int128) { | |
require (x > 0); | |
return int128 ( | |
uint256 (log_2 (x)) * 0xB17217F7D1CF79ABC9E3B39803F2F6AF >> 128); | |
} | |
/** | |
* Calculate binary exponent of x. Revert on overflow. | |
* | |
* @param x signed 64.64-bit fixed point number | |
* @return signed 64.64-bit fixed point number | |
*/ | |
function exp_2 (int128 x) internal pure returns (int128) { | |
require (x < 0x400000000000000000); // Overflow | |
if (x < -0x400000000000000000) return 0; // Underflow | |
uint256 result = 0x80000000000000000000000000000000; | |
if (x & 0x8000000000000000 > 0) | |
result = result * 0x16A09E667F3BCC908B2FB1366EA957D3E >> 128; | |
if (x & 0x4000000000000000 > 0) | |
result = result * 0x1306FE0A31B7152DE8D5A46305C85EDEC >> 128; | |
if (x & 0x2000000000000000 > 0) | |
result = result * 0x1172B83C7D517ADCDF7C8C50EB14A791F >> 128; | |
if (x & 0x1000000000000000 > 0) | |
result = result * 0x10B5586CF9890F6298B92B71842A98363 >> 128; | |
if (x & 0x800000000000000 > 0) | |
result = result * 0x1059B0D31585743AE7C548EB68CA417FD >> 128; | |
if (x & 0x400000000000000 > 0) | |
result = result * 0x102C9A3E778060EE6F7CACA4F7A29BDE8 >> 128; | |
if (x & 0x200000000000000 > 0) | |
result = result * 0x10163DA9FB33356D84A66AE336DCDFA3F >> 128; | |
if (x & 0x100000000000000 > 0) | |
result = result * 0x100B1AFA5ABCBED6129AB13EC11DC9543 >> 128; | |
if (x & 0x80000000000000 > 0) | |
result = result * 0x10058C86DA1C09EA1FF19D294CF2F679B >> 128; | |
if (x & 0x40000000000000 > 0) | |
result = result * 0x1002C605E2E8CEC506D21BFC89A23A00F >> 128; | |
if (x & 0x20000000000000 > 0) | |
result = result * 0x100162F3904051FA128BCA9C55C31E5DF >> 128; | |
if (x & 0x10000000000000 > 0) | |
result = result * 0x1000B175EFFDC76BA38E31671CA939725 >> 128; | |
if (x & 0x8000000000000 > 0) | |
result = result * 0x100058BA01FB9F96D6CACD4B180917C3D >> 128; | |
if (x & 0x4000000000000 > 0) | |
result = result * 0x10002C5CC37DA9491D0985C348C68E7B3 >> 128; | |
if (x & 0x2000000000000 > 0) | |
result = result * 0x1000162E525EE054754457D5995292026 >> 128; | |
if (x & 0x1000000000000 > 0) | |
result = result * 0x10000B17255775C040618BF4A4ADE83FC >> 128; | |
if (x & 0x800000000000 > 0) | |
result = result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB >> 128; | |
if (x & 0x400000000000 > 0) | |
result = result * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9 >> 128; | |
if (x & 0x200000000000 > 0) | |
result = result * 0x10000162E43F4F831060E02D839A9D16D >> 128; | |
if (x & 0x100000000000 > 0) | |
result = result * 0x100000B1721BCFC99D9F890EA06911763 >> 128; | |
if (x & 0x80000000000 > 0) | |
result = result * 0x10000058B90CF1E6D97F9CA14DBCC1628 >> 128; | |
if (x & 0x40000000000 > 0) | |
result = result * 0x1000002C5C863B73F016468F6BAC5CA2B >> 128; | |
if (x & 0x20000000000 > 0) | |
result = result * 0x100000162E430E5A18F6119E3C02282A5 >> 128; | |
if (x & 0x10000000000 > 0) | |
result = result * 0x1000000B1721835514B86E6D96EFD1BFE >> 128; | |
if (x & 0x8000000000 > 0) | |
result = result * 0x100000058B90C0B48C6BE5DF846C5B2EF >> 128; | |
if (x & 0x4000000000 > 0) | |
result = result * 0x10000002C5C8601CC6B9E94213C72737A >> 128; | |
if (x & 0x2000000000 > 0) | |
result = result * 0x1000000162E42FFF037DF38AA2B219F06 >> 128; | |
if (x & 0x1000000000 > 0) | |
result = result * 0x10000000B17217FBA9C739AA5819F44F9 >> 128; | |
if (x & 0x800000000 > 0) | |
result = result * 0x1000000058B90BFCDEE5ACD3C1CEDC823 >> 128; | |
if (x & 0x400000000 > 0) | |
result = result * 0x100000002C5C85FE31F35A6A30DA1BE50 >> 128; | |
if (x & 0x200000000 > 0) | |
result = result * 0x10000000162E42FF0999CE3541B9FFFCF >> 128; | |
if (x & 0x100000000 > 0) | |
result = result * 0x100000000B17217F80F4EF5AADDA45554 >> 128; | |
if (x & 0x80000000 > 0) | |
result = result * 0x10000000058B90BFBF8479BD5A81B51AD >> 128; | |
if (x & 0x40000000 > 0) | |
result = result * 0x1000000002C5C85FDF84BD62AE30A74CC >> 128; | |
if (x & 0x20000000 > 0) | |
result = result * 0x100000000162E42FEFB2FED257559BDAA >> 128; | |
if (x & 0x10000000 > 0) | |
result = result * 0x1000000000B17217F7D5A7716BBA4A9AE >> 128; | |
if (x & 0x8000000 > 0) | |
result = result * 0x100000000058B90BFBE9DDBAC5E109CCE >> 128; | |
if (x & 0x4000000 > 0) | |
result = result * 0x10000000002C5C85FDF4B15DE6F17EB0D >> 128; | |
if (x & 0x2000000 > 0) | |
result = result * 0x1000000000162E42FEFA494F1478FDE05 >> 128; | |
if (x & 0x1000000 > 0) | |
result = result * 0x10000000000B17217F7D20CF927C8E94C >> 128; | |
if (x & 0x800000 > 0) | |
result = result * 0x1000000000058B90BFBE8F71CB4E4B33D >> 128; | |
if (x & 0x400000 > 0) | |
result = result * 0x100000000002C5C85FDF477B662B26945 >> 128; | |
if (x & 0x200000 > 0) | |
result = result * 0x10000000000162E42FEFA3AE53369388C >> 128; | |
if (x & 0x100000 > 0) | |
result = result * 0x100000000000B17217F7D1D351A389D40 >> 128; | |
if (x & 0x80000 > 0) | |
result = result * 0x10000000000058B90BFBE8E8B2D3D4EDE >> 128; | |
if (x & 0x40000 > 0) | |
result = result * 0x1000000000002C5C85FDF4741BEA6E77E >> 128; | |
if (x & 0x20000 > 0) | |
result = result * 0x100000000000162E42FEFA39FE95583C2 >> 128; | |
if (x & 0x10000 > 0) | |
result = result * 0x1000000000000B17217F7D1CFB72B45E1 >> 128; | |
if (x & 0x8000 > 0) | |
result = result * 0x100000000000058B90BFBE8E7CC35C3F0 >> 128; | |
if (x & 0x4000 > 0) | |
result = result * 0x10000000000002C5C85FDF473E242EA38 >> 128; | |
if (x & 0x2000 > 0) | |
result = result * 0x1000000000000162E42FEFA39F02B772C >> 128; | |
if (x & 0x1000 > 0) | |
result = result * 0x10000000000000B17217F7D1CF7D83C1A >> 128; | |
if (x & 0x800 > 0) | |
result = result * 0x1000000000000058B90BFBE8E7BDCBE2E >> 128; | |
if (x & 0x400 > 0) | |
result = result * 0x100000000000002C5C85FDF473DEA871F >> 128; | |
if (x & 0x200 > 0) | |
result = result * 0x10000000000000162E42FEFA39EF44D91 >> 128; | |
if (x & 0x100 > 0) | |
result = result * 0x100000000000000B17217F7D1CF79E949 >> 128; | |
if (x & 0x80 > 0) | |
result = result * 0x10000000000000058B90BFBE8E7BCE544 >> 128; | |
if (x & 0x40 > 0) | |
result = result * 0x1000000000000002C5C85FDF473DE6ECA >> 128; | |
if (x & 0x20 > 0) | |
result = result * 0x100000000000000162E42FEFA39EF366F >> 128; | |
if (x & 0x10 > 0) | |
result = result * 0x1000000000000000B17217F7D1CF79AFA >> 128; | |
if (x & 0x8 > 0) | |
result = result * 0x100000000000000058B90BFBE8E7BCD6D >> 128; | |
if (x & 0x4 > 0) | |
result = result * 0x10000000000000002C5C85FDF473DE6B2 >> 128; | |
if (x & 0x2 > 0) | |
result = result * 0x1000000000000000162E42FEFA39EF358 >> 128; | |
if (x & 0x1 > 0) | |
result = result * 0x10000000000000000B17217F7D1CF79AB >> 128; | |
result >>= 63 - (x >> 64); | |
require (result <= uint256 (MAX_64x64)); | |
return int128 (result); | |
} | |
/** | |
* Calculate natural exponent of x. Revert on overflow. | |
* | |
* @param x signed 64.64-bit fixed point number | |
* @return signed 64.64-bit fixed point number | |
*/ | |
function exp (int128 x) internal pure returns (int128) { | |
require (x < 0x400000000000000000); // Overflow | |
if (x < -0x400000000000000000) return 0; // Underflow | |
return exp_2 ( | |
int128 (int256 (x) * 0x171547652B82FE1777D0FFDA0D23A7D12 >> 128)); | |
} | |
/** | |
* Calculate x / y rounding towards zero, where x and y are unsigned 256-bit | |
* integer numbers. Revert on overflow or when y is zero. | |
* | |
* @param x unsigned 256-bit integer number | |
* @param y unsigned 256-bit integer number | |
* @return unsigned 64.64-bit fixed point number | |
*/ | |
function divuu (uint256 x, uint256 y) private pure returns (uint128) { | |
require (y != 0); | |
uint256 result; | |
if (x <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | |
result = (x << 64) / y; | |
else { | |
uint256 a = 192; | |
uint256 b = 255; | |
while (a < b) { | |
uint256 m = a + b >> 1; | |
uint256 t = x >> m; | |
if (t == 0) b = m - 1; | |
else if (t > 1) a = m + 1; | |
else { | |
a = m; | |
break; | |
} | |
} | |
result = (x << 255 - a) / ((y - 1 >> a - 191) + 1); | |
require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); | |
uint256 hi = result * (y >> 128); | |
uint256 lo = result * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); | |
uint256 xh = x >> 192; | |
uint256 xl = x << 64; | |
if (xl < lo) xh -= 1; | |
xl -= lo; // We rely on overflow behavior here | |
lo = hi << 128; | |
if (xl < lo) xh -= 1; | |
xl -= lo; // We rely on overflow behavior here | |
assert (xh == hi >> 128); | |
result += xl / y; | |
} | |
require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); | |
return uint128 (result); | |
} | |
/** | |
* Calculate x^y assuming 0^0 is 1, where x is unsigned 129.127 fixed point | |
* number and y is unsigned 256-bit integer number. Revert on overflow. | |
* | |
* @param x unsigned 129.127-bit fixed point number | |
* @param y uint256 value | |
* @return unsigned 129.127-bit fixed point number | |
*/ | |
function powu (uint256 x, uint256 y) private pure returns (uint256) { | |
if (y == 0) return 0x80000000000000000000000000000000; | |
else if (x == 0) return 0; | |
else { | |
uint256 a = 0; | |
uint256 b = 255; | |
while (a < b) { | |
uint256 m = a + b >> 1; | |
uint256 t = x >> m; | |
if (t == 0) b = m - 1; | |
else if (t > 1) a = m + 1; | |
else { | |
a = m; | |
break; | |
} | |
} | |
int256 xe = int256 (a) - 127; | |
if (xe > 0) x >>= xe; | |
else x <<= -xe; | |
uint256 result = 0x80000000000000000000000000000000; | |
int256 re = 0; | |
while (y > 0) { | |
if (y & 1 > 0) { | |
result = result * x; | |
y -= 1; | |
re += xe; | |
if (result >= | |
0x8000000000000000000000000000000000000000000000000000000000000000) { | |
result >>= 128; | |
re += 1; | |
} else result >>= 127; | |
if (re < -127) return 0; // Underflow | |
require (re < 128); // Overflow | |
} else { | |
x = x * x; | |
y >>= 1; | |
xe <<= 1; | |
if (x >= | |
0x8000000000000000000000000000000000000000000000000000000000000000) { | |
x >>= 128; | |
xe += 1; | |
} else x >>= 127; | |
if (xe < -127) return 0; // Underflow | |
require (xe < 128); // Overflow | |
} | |
} | |
if (re > 0) result <<= re; | |
else if (re < 0) result >>= -re; | |
return result; | |
} | |
} | |
/** | |
* Calculate sqrt (x) rounding down, where x is unsigned 256-bit integer | |
* number. | |
* | |
* @param x unsigned 256-bit integer number | |
* @return unsigned 128-bit integer number | |
*/ | |
function sqrtu (uint256 x, uint256 r) private pure returns (uint128) { | |
if (x == 0) return 0; | |
else { | |
require (r > 0); | |
while (true) { | |
uint256 rr = x / r; | |
if (r == rr || r + 1 == rr) return uint128 (r); | |
else if (r == rr + 1) return uint128 (rr); | |
r = r + rr + 1 >> 1; | |
} | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment