Created
May 7, 2023 23:54
-
-
Save ntcho/41f846eb21aff8ce8743980cc24bf6c3 to your computer and use it in GitHub Desktop.
Matrix chain multiplication problem in Python
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Matrix Chain Multiplication Optimization | |
# size of the matrix in the matrix chain | |
# A_1 is a p[0] by p[1] matrix, A_2 is a p[1] by p[2] matrix | |
p = [10, 20, 12, 17, 22, 19, 50] | |
# length of the matrix chain + 1 | |
matrix_size = len(p) | |
# initialize matrix with zeros | |
m = [[0 for _ in range(matrix_size)] for _ in range(matrix_size)] | |
s = [[0 for _ in range(matrix_size)] for _ in range(matrix_size)] | |
latex = [["" for _ in range(matrix_size)] for _ in range(matrix_size)] | |
def calc_m_and_s(a, b): | |
# individual matrix | |
if a == b: | |
return 0 | |
# return calculated values | |
if m[a][b] != 0: | |
return m[a][b] | |
# adjacent matrix | |
if a + 1 == b: | |
latex[a][ | |
b | |
] = f"m[{a},{b}] = p_{a - 1}·p_{a}·p_{b} = {p[a - 1]}·{p[a]}·{p[b]} = {p[a - 1] * p[a] * p[b]}. \\\\" | |
m[a][b] = p[a - 1] * p[a] * p[b] | |
s[a][b] = a | |
return m[a][b] | |
# matrix chain | |
splits = [] | |
splits_latex_equation = [] | |
splits_latex_values = [] | |
window_size = b - a | |
for i in range(window_size): | |
splits.append( | |
calc_m_and_s(a, a + i) | |
+ calc_m_and_s(a + i + 1, b) | |
+ p[a - 1] * p[a + i] * p[b] | |
) | |
splits_latex_equation.append( | |
f"m[{a},{a+i}]+m[{a+i+1},{b}]+p_{a-1}·p_{a+i}·p_{b}" | |
) | |
splits_latex_values.append( | |
f"{m[a][a+i]}+{m[a+i+1][b]}+{p[a-1]}·{p[a+i]}·{p[b]}" | |
) | |
optimal = min(splits) | |
m[a][b] = optimal | |
s[a][b] = a + splits.index(optimal) | |
latex[a][b] = "\n".join( | |
[ | |
"m[{0},{1}] = min\\left\\{{\\begin{{array}}{{lr}}".format(a, b), | |
", \\\\\n".join(splits_latex_equation), | |
"\end{array}\\right\\}", | |
"\\\\[0.5em] \hspace{31px} ", | |
"= min\\left\\{\\begin{array}{lr}", | |
", \\\\\n".join(splits_latex_values), | |
"\end{array}\\right\\}", | |
"\\\\[0.25em] \hspace{31px} ", | |
"= min\\{{{0}\\}}".format(", ".join(map(str, splits))), | |
"\\\\[0.25em] \hspace{31px} ", | |
"= {0}.".format(m[a][b]), | |
"\\\\[0.5em]", | |
"s[{0},{1}] = {2}.".format(a, b, s[a][b]), | |
"\\\\[1em]", | |
] | |
) | |
return optimal | |
calc_m_and_s(1, len(p) - 1) | |
print("m = ") | |
print("\n".join(["\t".join(map(str, r[1:])) for r in m[1:]])) | |
print() | |
print("s = ") | |
print("\n".join(["\t".join(map(str, r[1:])) for r in s[1:]])) | |
diagonal = 5 | |
for i in range(1, len(p) - diagonal): | |
print(latex[i][i + diagonal]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment