-
-
Save nikopartanen/356f14780692eae8301105cdafb36aa9 to your computer and use it in GitHub Desktop.
Plot the score matrix from a Needleman-Wunsch pairwise sequence alignment
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
source("plot_needleman_wunsch.R") | |
plotNeedlemanWunsch("GATTACA", "GTCGACG", 1, 1, 1) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Kamil Slowikowski | |
# Apr 11, 2010 | |
# | |
# Display a Needleman-Wunsch alignment matrix with arrows | |
# showing the best possible alignments. | |
# Display an alignment matrix with arrows. | |
plotNeedlemanWunsch = function(seq1, seq2, match, mismatch, gap, | |
numbers=T, arrows=T, path=T) { | |
q1 = needleman_wunsch(seq1, seq2, match, mismatch, gap) | |
draw_alignment_matrix(q1$F, q1$Ptr, numbers=numbers, arrows=arrows) | |
if (path) { | |
bboxes(q1$Ptr) | |
paths(q1$F, q1$Ptr) | |
} | |
d1 = dim(q1$Ptr) | |
text(d1[2] / 2, d1[1] + 2, "Needleman-Wunsch") | |
xs = seq(1, d1[2], d1[2] / 3) | |
text(xs[1], d1[1] + 1, col='blue', paste("match =", match)) | |
text(xs[2], d1[1] + 1, col='red', paste("mismatch =", -mismatch)) | |
text(xs[3], d1[1] + 1, col='black', paste("gap =", -gap)) | |
} | |
############################################################################# | |
# Author : Dr. Liping Tong | |
# Website : http://webpages.math.luc.edu/~ltong/ | |
# | |
# x and y are the two sequences to compare | |
# x is on the left and y is on the right | |
# m is the score for match | |
# s is the penalty for mismatch | |
# d is the penalty for alignment with a gap | |
needleman_wunsch = function(x,y,m,s,d) | |
{ | |
nx = nchar(x) | |
xx = rep(0,nx) | |
for(i in 1:nx) | |
xx[i] = substr(x,start=i,stop=i) | |
ny = nchar(y) | |
yy = rep(0,ny) | |
for(i in 1:ny) yy[i] = substr(y,start=i,stop=i) | |
# initialize F and ptr | |
F = ptr = matrix(0,nx+1,ny+1) | |
dimnames(F) = dimnames(ptr) = list(c("",xx),c("",yy)) | |
for (i in 1:nx) F[i+1,1] = -i*d | |
for (j in 1:ny) F[1,j+1] = -j*d | |
# main iteration | |
for (i in 1:nx) | |
{ | |
for (j in 1:ny) | |
{ | |
if (xx[i] == yy[j]) | |
{ | |
t1 = F[i,j] + m | |
} else { | |
t1 = F[i,j] - s | |
} | |
t2 = F[i,j+1] - d | |
t3 = F[i+1,j] - d | |
F[i+1,j+1] = tt = max(t1,t2,t3) | |
if (t1 == tt) ptr[i+1,j+1] = ptr[i+1,j+1] + 2 | |
if (t2 == tt) ptr[i+1,j+1] = ptr[i+1,j+1] + 3 | |
if (t3 == tt) ptr[i+1,j+1] = ptr[i+1,j+1] + 4 | |
} | |
} | |
return(list(F = F, Ptr = ptr)) | |
} | |
# Highlight cells in the grid with thick lines. | |
bbox = function(x, y) { | |
rect(x - 0.5, y - 0.5, x + 0.5, y + 0.5, border='darkgrey', lwd=3) | |
} | |
# Create arrows between cells in the grid. | |
arrow1 = function(x0, y0, x1, y1, color) { | |
arrows(x0, y0, x1, y1, col=color, length=0.07, angle=30, lwd=1.5) | |
} | |
# Up, Left, Up-Left | |
up = function(x, y, color) arrow1(x, y + 0.3, x, y + 0.6, color) | |
le = function(x, y, color) arrow1(x - 0.3, y, x - 0.6, y, color) | |
ul = function(x, y, color) arrow1(x - 0.3, y + 0.3, x - 0.6, y + 0.6, color) | |
bboxes = function(p) { | |
rows = dim(p)[1] | |
f1 = function(i, j) { | |
y = rows - i | |
bbox(j, y) | |
if (p[i, j] %in% c(2, 5, 6, 9)) { | |
f1(i - 1, j - 1) | |
} | |
if (p[i, j] %in% c(3, 5, 7, 9)) { | |
f1(i - 1, j) | |
} | |
if (p[i, j] %in% c(4, 6, 7, 9)) { | |
f1(i, j - 1) | |
} | |
} | |
f1(dim(p)[1], dim(p)[2]) | |
} | |
paths = function(v, p) { | |
rows = dim(p)[1] | |
f1 = function(i, j) { | |
y = rows - i | |
if (p[i, j] %in% c(2, 5, 6, 9)) { | |
if (v[i, j] > v[i - 1, j - 1]) { | |
ul(j, y, 'blue') | |
} else { | |
ul(j, y, 'red') | |
} | |
f1(i - 1, j - 1) | |
} | |
if (p[i, j] %in% c(3, 5, 7, 9)) { | |
up(j, y, 'black') | |
f1(i - 1, j) | |
} | |
if (p[i, j] %in% c(4, 6, 7, 9)) { | |
le(j, y, 'black') | |
f1(i, j - 1) | |
} | |
} | |
f1(dim(p)[1], dim(p)[2]) | |
} | |
# v is a matrix of values | |
# p is a matrix of pointers that represent arrow directions | |
draw_alignment_matrix = function(v, p, numbers=T, arrows=T) | |
{ | |
rows = dim(v)[1] | |
cols = dim(v)[2] | |
# Create a plot of appropriate size. | |
par(mar=c(0, 0, 0, 0)) | |
plot('', axes=FALSE, xlab='', ylab='', | |
xlim=c(-0.5, cols + 0.5), | |
ylim=c(-0.5, rows + 2.5)) | |
# Draw a grid. | |
segments(x0=seq(-0.5, cols + 0.5), y0=-0.5, y1=rows + 0.5, col='grey') | |
segments(y0=seq(-0.5, rows + 0.5), x0=-0.5, x1=cols + 0.5, col='grey') | |
# Print the letters of the sequences. | |
for (i in 1:rows) text(0, rows - i, dimnames(v)[[1]][i], font=2) | |
for (j in 1:cols) text(j, rows, dimnames(v)[[2]][j], font=2) | |
#color = 'cornflowerblue' | |
color = 'grey' | |
for (i in 1:rows) { | |
y = rows - i | |
for (x in 1:cols) { | |
if (numbers) { | |
text(x, y, v[i, x]) | |
} | |
if (arrows) { | |
if (p[i, x] %in% c(2, 5, 6, 9)) { ul(x, y, color) } | |
if (p[i, x] %in% c(3, 5, 7, 9)) { up(x, y, color) } | |
if (p[i, x] %in% c(4, 6, 7, 9)) { le(x, y, color) } | |
} | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment