-
-
Save nikitakit/6ab61a73b86c50ad88d409bac3c3d09f to your computer and use it in GitHub Desktop.
""" | |
Beam decoder for tensorflow | |
Sample usage: | |
``` | |
from tf_beam_decoder import beam_decoder | |
decoded_sparse, decoded_logprobs = beam_decoder( | |
cell=cell, | |
beam_size=7, | |
stop_token=2, | |
initial_state=initial_state, | |
initial_input=initial_input, | |
tokens_to_inputs_fn=lambda tokens: tf.nn.embedding_lookup(my_embedding, tokens), | |
) | |
``` | |
See the `beam_decoder` function for complete documentation. (Only the | |
`beam_decoder` function is part of the public API here.) | |
""" | |
import tensorflow as tf | |
import numpy as np | |
from tensorflow.python.util import nest | |
# %% | |
def nest_map(func, nested): | |
if not nest.is_sequence(nested): | |
return func(nested) | |
flat = nest.flatten(nested) | |
return nest.pack_sequence_as(nested, list(map(func, flat))) | |
# %% | |
def sparse_boolean_mask(tensor, mask): | |
""" | |
Creates a sparse tensor from masked elements of `tensor` | |
Inputs: | |
tensor: a 2-D tensor, [batch_size, T] | |
mask: a 2-D mask, [batch_size, T] | |
Output: a 2-D sparse tensor | |
""" | |
mask_lens = tf.reduce_sum(tf.cast(mask, tf.int32), -1, keep_dims=True) | |
mask_shape = tf.shape(mask) | |
left_shifted_mask = tf.tile( | |
tf.expand_dims(tf.range(mask_shape[1]), 0), | |
[mask_shape[0], 1] | |
) < mask_lens | |
return tf.SparseTensor( | |
indices=tf.where(left_shifted_mask), | |
values=tf.boolean_mask(tensor, mask), | |
shape=tf.cast(tf.pack([mask_shape[0], tf.reduce_max(mask_lens)]), tf.int64) # For 2D only | |
) | |
# %% | |
def flat_batch_gather(flat_params, indices, validate_indices=None, | |
batch_size=None, | |
options_size=None): | |
""" | |
Gather slices from `flat_params` according to `indices`, separately for each | |
example in a batch. | |
output[(b * indices_size + i), :, ..., :] = flat_params[(b * options_size + indices[b, i]), :, ..., :] | |
The arguments `batch_size` and `options_size`, if provided, are used instead | |
of looking up the shape from the inputs. This may help avoid redundant | |
computation (TODO: figure out if tensorflow's optimizer can do this automatically) | |
Args: | |
flat_params: A `Tensor`, [batch_size * options_size, ...] | |
indices: A `Tensor`, [batch_size, indices_size] | |
validate_indices: An optional `bool`. Defaults to `True` | |
batch_size: (optional) an integer or scalar tensor representing the batch size | |
options_size: (optional) an integer or scalar Tensor representing the number of options to choose from | |
""" | |
if batch_size is None: | |
batch_size = indices.get_shape()[0].value | |
if batch_size is None: | |
batch_size = tf.shape(indices)[0] | |
if options_size is None: | |
options_size = flat_params.get_shape()[0].value | |
if options_size is None: | |
options_size = tf.shape(flat_params)[0] // batch_size | |
else: | |
options_size = options_size // batch_size | |
indices_offsets = tf.reshape(tf.range(batch_size) * options_size, [-1] + [1] * (len(indices.get_shape())-1)) | |
indices_into_flat = indices + tf.cast(indices_offsets, indices.dtype) | |
flat_indices_into_flat = tf.reshape(indices_into_flat, [-1]) | |
return tf.gather(flat_params, flat_indices_into_flat, validate_indices=validate_indices) | |
def batch_gather(params, indices, validate_indices=None, | |
batch_size=None, | |
options_size=None): | |
""" | |
Gather slices from `params` according to `indices`, separately for each | |
example in a batch. | |
output[b, i, ..., j, :, ..., :] = params[b, indices[b, i, ..., j], :, ..., :] | |
The arguments `batch_size` and `options_size`, if provided, are used instead | |
of looking up the shape from the inputs. This may help avoid redundant | |
computation (TODO: figure out if tensorflow's optimizer can do this automatically) | |
Args: | |
params: A `Tensor`, [batch_size, options_size, ...] | |
indices: A `Tensor`, [batch_size, ...] | |
validate_indices: An optional `bool`. Defaults to `True` | |
batch_size: (optional) an integer or scalar tensor representing the batch size | |
options_size: (optional) an integer or scalar Tensor representing the number of options to choose from | |
""" | |
if batch_size is None: | |
batch_size = params.get_shape()[0].merge_with(indices.get_shape()[0]).value | |
if batch_size is None: | |
batch_size = tf.shape(indices)[0] | |
if options_size is None: | |
options_size = params.get_shape()[1].value | |
if options_size is None: | |
options_size = tf.shape(params)[1] | |
batch_size_times_options_size = batch_size * options_size | |
# TODO(nikita): consider using gather_nd. However as of 1/9/2017 gather_nd | |
# has no gradients implemented. | |
flat_params = tf.reshape(params, tf.concat(0,[[batch_size_times_options_size], tf.shape(params)[2:]])) | |
indices_offsets = tf.reshape(tf.range(batch_size) * options_size, [-1] + [1] * (len(indices.get_shape())-1)) | |
indices_into_flat = indices + tf.cast(indices_offsets, indices.dtype) | |
return tf.gather(flat_params, indices_into_flat, validate_indices=validate_indices) | |
# %% | |
class BeamFlattenWrapper(tf.nn.rnn_cell.RNNCell): | |
def __init__(self, cell, beam_size): | |
self.cell = cell | |
self.beam_size = beam_size | |
def merge_batch_beam(self, tensor): | |
remaining_shape = tf.shape(tensor)[2:] | |
res = tf.reshape(tensor, tf.concat(0, [[-1], remaining_shape])) | |
res.set_shape(tf.TensorShape((None,)).concatenate(tensor.get_shape()[2:])) | |
return res | |
def unmerge_batch_beam(self, tensor): | |
remaining_shape = tf.shape(tensor)[1:] | |
res = tf.reshape(tensor, tf.concat(0, [[-1, self.beam_size], remaining_shape])) | |
res.set_shape(tf.TensorShape((None,self.beam_size)).concatenate(tensor.get_shape()[1:])) | |
return res | |
def prepend_beam_size(self, element): | |
return tf.TensorShape(self.beam_size).concatenate(element) | |
def tile_along_beam(self, state): | |
if nest.is_sequence(state): | |
return nest_map( | |
lambda val: self.tile_along_beam(val), | |
state | |
) | |
if not isinstance(state, tf.Tensor): | |
raise ValueError("State should be a sequence or tensor") | |
tensor = state | |
tensor_shape = tensor.get_shape().with_rank_at_least(1) | |
new_tensor_shape = tensor_shape[:1].concatenate(self.beam_size).concatenate(tensor_shape[1:]) | |
dynamic_tensor_shape = tf.unpack(tf.shape(tensor)) | |
res = tf.expand_dims(tensor, 1) | |
res = tf.tile(res, [1, self.beam_size] + [1] * (tensor_shape.ndims-1)) | |
res = tf.reshape(res, [-1, self.beam_size] + list(dynamic_tensor_shape[1:])) | |
res.set_shape(new_tensor_shape) | |
return res | |
def __call__(self, inputs, state, scope=None): | |
flat_inputs = nest_map(self.merge_batch_beam, inputs) | |
flat_state = nest_map(self.merge_batch_beam, state) | |
flat_output, flat_next_state = self.cell(flat_inputs, flat_state, scope=scope) | |
output = nest_map(self.unmerge_batch_beam, flat_output) | |
next_state = nest_map(self.unmerge_batch_beam, flat_next_state) | |
return output, next_state | |
@property | |
def state_size(self): | |
return nest_map(self.prepend_beam_size, self.cell.state_size) | |
@property | |
def output_size(self): | |
return nest_map(self.prepend_beam_size, self.cell.output_size) | |
# %% | |
class BeamReplicateWrapper(tf.nn.rnn_cell.RNNCell): | |
def __init__(self, cell, beam_size): | |
self.cell = cell | |
self.beam_size = beam_size | |
def prepend_beam_size(self, element): | |
return tf.TensorShape(self.beam_size).concatenate(element) | |
def tile_along_beam(self, state): | |
if nest.is_sequence(state): | |
return nest_map( | |
lambda val: self.tile_along_beam(val), | |
state | |
) | |
if not isinstance(state, tf.Tensor): | |
raise ValueError("State should be a sequence or tensor") | |
tensor = state | |
tensor_shape = tensor.get_shape().with_rank_at_least(1) | |
new_tensor_shape = tensor_shape[:1].concatenate(self.beam_size).concatenate(tensor_shape[1:]) | |
dynamic_tensor_shape = tf.unpack(tf.shape(tensor)) | |
res = tf.expand_dims(tensor, 1) | |
res = tf.tile(res, [1, self.beam_size] + [1] * (tensor_shape.ndims-1)) | |
res = tf.reshape(res, [-1, self.beam_size] + list(dynamic_tensor_shape[1:])) | |
res.set_shape(new_tensor_shape) | |
return res | |
def __call__(self, inputs, state, scope=None): | |
varscope = scope or tf.get_variable_scope() | |
flat_inputs = nest.flatten(inputs) | |
flat_state = nest.flatten(state) | |
flat_inputs_unstacked = list(zip(*[tf.unstack(tensor, num=self.beam_size, axis=1) for tensor in flat_inputs])) | |
flat_state_unstacked = list(zip(*[tf.unstack(tensor, num=self.beam_size, axis=1) for tensor in flat_state])) | |
flat_output_unstacked = [] | |
flat_next_state_unstacked = [] | |
output_sample = None | |
next_state_sample = None | |
for i, (inputs_k, state_k) in enumerate(zip(flat_inputs_unstacked, flat_state_unstacked)): | |
inputs_k = nest.pack_sequence_as(inputs, inputs_k) | |
state_k = nest.pack_sequence_as(state, state_k) | |
# TODO(nikita): is this scope stuff correct? | |
if i == 0: | |
output_k, next_state_k = self.cell(inputs_k, state_k, scope=scope) | |
else: | |
with tf.variable_scope(varscope, reuse=True): | |
output_k, next_state_k = self.cell(inputs_k, state_k, scope=varscope if scope is not None else None) | |
flat_output_unstacked.append(nest.flatten(output_k)) | |
flat_next_state_unstacked.append(nest.flatten(next_state_k)) | |
output_sample = output_k | |
next_state_sample = next_state_k | |
flat_output = [tf.stack(tensors, axis=1) for tensors in zip(*flat_output_unstacked)] | |
flat_next_state = [tf.stack(tensors, axis=1) for tensors in zip(*flat_next_state_unstacked)] | |
output = nest.pack_sequence_as(output_sample, flat_output) | |
next_state = nest.pack_sequence_as(next_state_sample, flat_next_state) | |
return output, next_state | |
@property | |
def state_size(self): | |
return nest_map(self.prepend_beam_size, self.cell.state_size) | |
@property | |
def output_size(self): | |
return nest_map(self.prepend_beam_size, self.cell.output_size) | |
# %% | |
class BeamSearchHelper(object): | |
# Our beam scores are stored in a fixed-size tensor, but sometimes the | |
# tensor size is greater than the number of elements actually on the beam. | |
# The invalid elements are assigned a highly negative score. | |
# However, top_k errors if any of the inputs have a score of -inf, so we use | |
# a large negative constant instead | |
INVALID_SCORE = -1e18 | |
def __init__(self, cell, beam_size, stop_token, initial_state, initial_input, | |
score_upper_bound=None, | |
max_len=100, | |
outputs_to_score_fn=None, | |
tokens_to_inputs_fn=None, | |
cell_transform='default', | |
scope=None | |
): | |
self.beam_size = beam_size | |
self.stop_token = stop_token | |
self.max_len = max_len | |
self.scope = scope | |
if score_upper_bound is None and outputs_to_score_fn is None: | |
self.score_upper_bound = 0.0 | |
elif score_upper_bound is None or score_upper_bound > 3e38: | |
# Note: 3e38 is just a little smaller than the largest float32 | |
# Second condition allows for Infinity as a synonym for None | |
self.score_upper_bound = None | |
else: | |
self.score_upper_bound = float(score_upper_bound) | |
if self.max_len is None and self.score_upper_bound is None: | |
raise ValueError("Beam search needs a stopping criterion. Please provide max_len or score_upper_bound.") | |
if cell_transform == 'default': | |
if type(cell) in [tf.nn.rnn_cell.LSTMCell, | |
tf.nn.rnn_cell.GRUCell, | |
tf.nn.rnn_cell.BasicLSTMCell, | |
tf.nn.rnn_cell.BasicRNNCell]: | |
cell_transform = 'flatten' | |
else: | |
cell_transform = 'replicate' | |
if cell_transform == 'none': | |
self.cell = cell | |
self.initial_state = initial_state | |
self.initial_input = initial_input | |
elif cell_transform == 'flatten': | |
self.cell = BeamFlattenWrapper(cell, self.beam_size) | |
self.initial_state = self.cell.tile_along_beam(initial_state) | |
self.initial_input = self.cell.tile_along_beam(initial_input) | |
elif cell_transform == 'replicate': | |
self.cell = BeamReplicateWrapper(cell, self.beam_size) | |
self.initial_state = self.cell.tile_along_beam(initial_state) | |
self.initial_input = self.cell.tile_along_beam(initial_input) | |
else: | |
raise ValueError("cell_transform must be one of: 'default', 'flatten', 'replicate', 'none'") | |
self._cell_transform_used = cell_transform | |
if outputs_to_score_fn is not None: | |
self.outputs_to_score_fn = outputs_to_score_fn | |
if tokens_to_inputs_fn is not None: | |
self.tokens_to_inputs_fn = tokens_to_inputs_fn | |
batch_size = tf.Dimension(None) | |
if not nest.is_sequence(self.initial_state): | |
batch_size = batch_size.merge_with(self.initial_state.get_shape()[0]) | |
else: | |
for tensor in nest.flatten(self.initial_state): | |
batch_size = batch_size.merge_with(tensor.get_shape()[0]) | |
if not nest.is_sequence(self.initial_input): | |
batch_size = batch_size.merge_with(self.initial_input.get_shape()[0]) | |
else: | |
for tensor in nest.flatten(self.initial_input): | |
batch_size = batch_size.merge_with(tensor.get_shape()[0]) | |
self.inferred_batch_size = batch_size.value | |
if self.inferred_batch_size is not None: | |
self.batch_size = self.inferred_batch_size | |
else: | |
if not nest.is_sequence(self.initial_state): | |
self.batch_size = tf.shape(self.initial_state)[0] | |
else: | |
self.batch_size = tf.shape(list(nest.flatten(self.initial_state))[0])[0] | |
self.inferred_batch_size_times_beam_size = None | |
if self.inferred_batch_size is not None: | |
self.inferred_batch_size_times_beam_size = self.inferred_batch_size * self.beam_size | |
self.batch_size_times_beam_size = self.batch_size * self.beam_size | |
def outputs_to_score_fn(self, cell_output): | |
return tf.nn.log_softmax(cell_output) | |
def tokens_to_inputs_fn(self, symbols): | |
return tf.expand_dims(symbols, -1) | |
def beam_setup(self, time): | |
emit_output = None | |
next_cell_state = self.initial_state | |
next_input = self.initial_input | |
# Set up the beam search tracking state | |
cand_symbols = tf.fill([self.batch_size, 0], tf.constant(self.stop_token, dtype=tf.int32)) | |
cand_logprobs = tf.ones((self.batch_size,), dtype=tf.float32) * -float('inf') | |
first_in_beam_mask = tf.equal(tf.range(self.batch_size_times_beam_size) % self.beam_size, 0) | |
beam_symbols = tf.fill([self.batch_size_times_beam_size, 0], tf.constant(self.stop_token, dtype=tf.int32)) | |
beam_logprobs = tf.select( | |
first_in_beam_mask, | |
tf.fill([self.batch_size_times_beam_size], 0.0), | |
tf.fill([self.batch_size_times_beam_size], self.INVALID_SCORE) | |
) | |
# Set up correct dimensions for maintaining loop invariants. | |
# Note that the last dimension (initialized to zero) is not a loop invariant, | |
# so we need to clear it. TODO(nikita): is there a public API for clearing shape | |
# inference so that _shape is not necessary? | |
cand_symbols._shape = tf.TensorShape((self.inferred_batch_size, None)) | |
cand_logprobs._shape = tf.TensorShape((self.inferred_batch_size,)) | |
beam_symbols._shape = tf.TensorShape((self.inferred_batch_size_times_beam_size, None)) | |
beam_logprobs._shape = tf.TensorShape((self.inferred_batch_size_times_beam_size,)) | |
next_loop_state = ( | |
cand_symbols, | |
cand_logprobs, | |
beam_symbols, | |
beam_logprobs, | |
) | |
emit_output = tf.zeros(self.cell.output_size) | |
elements_finished = tf.zeros([self.batch_size], dtype=tf.bool) | |
return (elements_finished, next_input, next_cell_state, | |
emit_output, next_loop_state) | |
def beam_loop(self, time, cell_output, cell_state, loop_state): | |
( | |
past_cand_symbols, # [batch_size, time-1] | |
past_cand_logprobs,# [batch_size] | |
past_beam_symbols, # [batch_size*beam_size, time-1], right-aligned | |
past_beam_logprobs,# [batch_size*beam_size] | |
) = loop_state | |
# We don't actually use this, but emit_output is required to match the | |
# cell output size specfication. Otherwise we would leave this as None. | |
emit_output = cell_output | |
# 1. Get scores for all candidate sequences | |
logprobs = self.outputs_to_score_fn(cell_output) | |
try: | |
num_classes = int(logprobs.get_shape()[-1]) | |
except: | |
# Shape inference failed | |
num_classes = tf.shape(logprobs)[-1] | |
logprobs_batched = tf.reshape(logprobs + tf.expand_dims(tf.reshape(past_beam_logprobs, [self.batch_size, self.beam_size]), 2), | |
[self.batch_size, self.beam_size * num_classes]) | |
# 2. Determine which states to pass to next iteration | |
# TODO(nikita): consider using slice+fill+concat instead of adding a mask | |
nondone_mask = tf.reshape( | |
tf.cast(tf.equal(tf.range(num_classes), self.stop_token), tf.float32) * self.INVALID_SCORE, | |
[1, 1, num_classes]) | |
nondone_mask = tf.reshape(tf.tile(nondone_mask, [1, self.beam_size, 1]), | |
[-1, self.beam_size*num_classes]) | |
beam_logprobs, indices = tf.nn.top_k(logprobs_batched + nondone_mask, self.beam_size) | |
beam_logprobs = tf.reshape(beam_logprobs, [-1]) | |
# For continuing to the next symbols | |
symbols = indices % num_classes # [batch_size, self.beam_size] | |
parent_refs = indices // num_classes # [batch_size, self.beam_size] | |
symbols_history = flat_batch_gather(past_beam_symbols, parent_refs, batch_size=self.batch_size, options_size=self.beam_size) | |
beam_symbols = tf.concat(1, [symbols_history, tf.reshape(symbols, [-1, 1])]) | |
# Handle the output and the cell state shuffling | |
next_cell_state = nest_map( | |
lambda element: batch_gather(element, parent_refs, batch_size=self.batch_size, options_size=self.beam_size), | |
cell_state | |
) | |
next_input = self.tokens_to_inputs_fn(tf.reshape(symbols, [-1, self.beam_size])) | |
# 3. Update the candidate pool to include entries that just ended with a stop token | |
logprobs_done = tf.reshape(logprobs_batched, [-1, self.beam_size, num_classes])[:,:,self.stop_token] | |
done_parent_refs = tf.argmax(logprobs_done, 1) | |
done_symbols = flat_batch_gather(past_beam_symbols, done_parent_refs, batch_size=self.batch_size, options_size=self.beam_size) | |
logprobs_done_max = tf.reduce_max(logprobs_done, 1) | |
cand_symbols_unpadded = tf.select(logprobs_done_max > past_cand_logprobs, | |
done_symbols, | |
past_cand_symbols) | |
cand_logprobs = tf.maximum(logprobs_done_max, past_cand_logprobs) | |
cand_symbols = tf.concat(1, [cand_symbols_unpadded, tf.fill([self.batch_size, 1], self.stop_token)]) | |
# 4. Check the stopping criteria | |
if self.max_len is not None: | |
elements_finished_clip = (time >= self.max_len) | |
if self.score_upper_bound is not None: | |
elements_finished_bound = tf.reduce_max(tf.reshape(beam_logprobs, [-1, self.beam_size]), 1) < (cand_logprobs - self.score_upper_bound) | |
if self.max_len is not None and self.score_upper_bound is not None: | |
elements_finished = elements_finished_clip | elements_finished_bound | |
elif self.score_upper_bound is not None: | |
elements_finished = elements_finished_bound | |
elif self.max_len is not None: | |
# this broadcasts elements_finished_clip to the correct shape | |
elements_finished = tf.zeros([self.batch_size], dtype=tf.bool) | elements_finished_clip | |
else: | |
assert False, "Lack of stopping criterion should have been caught in constructor" | |
# 5. Prepare return values | |
# While loops require strict shape invariants, so we manually set shapes | |
# in case the automatic shape inference can't calculate these. Even when | |
# this is redundant is has the benefit of helping catch shape bugs. | |
for tensor in list(nest.flatten(next_input)) + list(nest.flatten(next_cell_state)): | |
tensor.set_shape(tf.TensorShape((self.inferred_batch_size, self.beam_size)).concatenate(tensor.get_shape()[2:])) | |
for tensor in [cand_symbols, cand_logprobs, elements_finished]: | |
tensor.set_shape(tf.TensorShape((self.inferred_batch_size,)).concatenate(tensor.get_shape()[1:])) | |
for tensor in [beam_symbols, beam_logprobs]: | |
tensor.set_shape(tf.TensorShape((self.inferred_batch_size_times_beam_size,)).concatenate(tensor.get_shape()[1:])) | |
next_loop_state = ( | |
cand_symbols, | |
cand_logprobs, | |
beam_symbols, | |
beam_logprobs, | |
) | |
return (elements_finished, next_input, next_cell_state, | |
emit_output, next_loop_state) | |
def loop_fn(self, time, cell_output, cell_state, loop_state): | |
if cell_output is None: | |
return self.beam_setup(time) | |
else: | |
return self.beam_loop(time, cell_output, cell_state, loop_state) | |
def decode_dense(self): | |
emit_ta, final_state, final_loop_state = tf.nn.raw_rnn(self.cell, self.loop_fn, scope=self.scope) | |
cand_symbols, cand_logprobs, beam_symbols, beam_logprobs = final_loop_state | |
return cand_symbols, cand_logprobs | |
def decode_sparse(self, include_stop_tokens=True): | |
dense_symbols, logprobs = self.decode_dense() | |
mask = tf.not_equal(dense_symbols, self.stop_token) | |
if include_stop_tokens: | |
mask = tf.concat(1, [tf.ones_like(mask[:,:1]), mask[:,:-1]]) | |
return sparse_boolean_mask(dense_symbols, mask), logprobs | |
# %% | |
def beam_decoder( | |
cell, | |
beam_size, | |
stop_token, | |
initial_state, | |
initial_input, | |
tokens_to_inputs_fn, | |
outputs_to_score_fn=None, | |
score_upper_bound=None, | |
max_len=None, | |
cell_transform='default', | |
output_dense=False, | |
scope=None | |
): | |
"""Beam search decoder | |
Args: | |
cell: tf.nn.rnn_cell.RNNCell defining the cell to use | |
beam_size: the beam size for this search | |
stop_token: the index of the symbol used to indicate the end of the | |
output | |
initial_state: initial cell state for the decoder | |
initial_input: initial input into the decoder (typically the embedding | |
of a START token) | |
tokens_to_inputs_fn: function to go from token numbers to cell inputs. | |
A typical implementation would look up the tokens in an embedding | |
matrix. | |
(signature: [batch_size, beam_size, num_classes] int32 -> [batch_size, beam_size, ...]) | |
outputs_to_score_fn: function to go from RNN cell outputs to scores for | |
different tokens. If left unset, log-softmax is used (i.e. the cell | |
outputs are treated as unnormalized logits). | |
Inputs to the function are cell outputs, i.e. a possibly nested | |
structure of items with shape [batch_size, beam_size, ...]. | |
Must return a single Tensor with shape [batch_size, beam_size, num_classes] | |
score_upper_bound: (float or None). An upper bound on sequence scores. | |
Used to determine a stopping criterion for beam search: the search | |
stops if the highest-scoring complete sequence found so far beats | |
anything on the beam by at least score_upper_bound. For typical | |
sequence decoder models, outputs_to_score_fn returns normalized | |
logits and this upper bound should be set to 0. Defaults to 0 if | |
outputs_to_score_fn is not provided, otherwise defaults to None. | |
max_len: (default None) maximum length after which to abort beam search. | |
This provides an alternative stopping criterion. | |
cell_transform: 'flatten', 'replicate', 'none', or 'default'. Most RNN | |
primitives require inputs/outputs/states to have a shape that starts | |
with [batch_size]. Beam search instead relies on shapes that start | |
with [batch_size, beam_size]. This parameter controls how the arguments | |
cell/initial_state/initial_input are transformed to comply with this. | |
* 'flatten' creates a virtual batch of size batch_size*beam_size, and | |
uses the cell with such a batch size. This transformation is only | |
valid for cells that do not rely on the batch ordering in any way. | |
(This is true of most RNNCells, but notably excludes cells that | |
use attention.) | |
The values of initial_state and initial_input are expanded and | |
tiled along the beam_size dimension. | |
* 'replicate' creates beam_size virtual replicas of the cell, each | |
one of which is applied to batch_size elements. This should yield | |
correct results (even for models with attention), but may not have | |
ideal performance. | |
The values of initial_state and initial_input are expanded and | |
tiled along the beam_size dimension. | |
* 'none' passes along cell/initial_state/initial_input as-is. | |
Note that this requires initial_state and initial_input to already | |
have a shape [batch_size, beam_size, ...] and a custom cell type | |
that can handle this | |
* 'default' selects 'flatten' for LSTMCell, GRUCell, BasicLSTMCell, | |
and BasicRNNCell. For all other cell types, it selects 'replicate' | |
output_dense: (default False) toggles returning the decoded sequence as | |
dense tensor. | |
scope: VariableScope for the created subgraph; defaults to "RNN". | |
Returns: | |
A tuple of the form (decoded, log_probabilities) where: | |
decoded: A SparseTensor (or dense Tensor if output_dense=True), of | |
underlying shape [batch_size, ?] that contains the decoded sequence | |
for each batch element | |
log_probability: a [batch_size] tensor containing sequence | |
log-probabilities | |
""" | |
with tf.variable_scope(scope or "RNN") as varscope: | |
helper = BeamSearchHelper( | |
cell=cell, | |
beam_size=beam_size, | |
stop_token=stop_token, | |
initial_state=initial_state, | |
initial_input=initial_input, | |
tokens_to_inputs_fn=tokens_to_inputs_fn, | |
outputs_to_score_fn=outputs_to_score_fn, | |
score_upper_bound=score_upper_bound, | |
max_len=max_len, | |
cell_transform=cell_transform, | |
scope=varscope | |
) | |
if output_dense: | |
return helper.decode_dense() | |
else: | |
return helper.decode_sparse() |
import tensorflow as tf | |
from tensorflow.python.platform import test | |
import numpy as np | |
from tf_beam_decoder import beam_decoder, BeamSearchHelper | |
# %% | |
sess = tf.InteractiveSession() | |
# %% | |
class MarkovChainCell(tf.nn.rnn_cell.RNNCell): | |
""" | |
This cell type is only used for testing the beam decoder. | |
It represents a Markov chain characterized by a probability table p(x_t|x_{t-1},x_{t-2}). | |
""" | |
def __init__(self, table): | |
""" | |
table[a,b,c] = p(x_t=c|x_{t-1}=b,x_{t-2}=a) | |
""" | |
assert len(table.shape) == 3 and table.shape[0] == table.shape[1] == table.shape[2] | |
with np.errstate(divide='ignore'): # ignore warning for log(0) | |
self.log_table = np.log(np.asarray(table, dtype=np.float32)) | |
self.log_table_var = None | |
self._output_size = table.shape[0] | |
def __call__(self, inputs, state, scope=None): | |
""" | |
inputs: [batch_size, 1] int tensor | |
state: [batch_size, 1] int tensor | |
""" | |
# Simulate variable creation, to ensure scoping works correctly | |
log_table = tf.get_variable('log_table', | |
shape=(3,3,3), | |
dtype=tf.float32, | |
initializer=tf.constant_initializer(self.log_table)) | |
if self.log_table_var is None: | |
self.log_table_var = log_table | |
else: | |
assert self.log_table_var == log_table | |
logits = tf.reshape(log_table, [-1, self.output_size]) | |
indices = state[0] * self.output_size + inputs | |
return tf.gather(logits, tf.reshape(indices, [-1])), (inputs,) | |
@property | |
def state_size(self): | |
return (1,) | |
@property | |
def output_size(self): | |
return self._output_size | |
class BeamSearchTest(test.TestCase): | |
def test1(self): | |
""" | |
test correct decode in sequence | |
""" | |
with self.test_session() as sess: | |
table = np.array([[[0.0, 0.6, 0.4], | |
[0.0, 0.4, 0.6], | |
[0.0, 0.0, 1.0]]] * 3) | |
for cell_transform in ['default', 'flatten', 'replicate']: | |
cell = MarkovChainCell(table) | |
initial_state = cell.zero_state(1, tf.int32) | |
initial_input = initial_state[0] | |
with tf.variable_scope('test1_{}'.format(cell_transform)): | |
best_sparse, best_logprobs = beam_decoder( | |
cell=cell, | |
beam_size=7, | |
stop_token=2, | |
initial_state=initial_state, | |
initial_input=initial_input, | |
tokens_to_inputs_fn=lambda x:tf.expand_dims(x, -1), | |
max_len=5, | |
cell_transform=cell_transform, | |
output_dense=False, | |
) | |
tf.variables_initializer([cell.log_table_var]).run() | |
assert all(best_sparse.eval().values == [2]) | |
assert np.isclose(np.exp(best_logprobs.eval())[0], 0.4) | |
def test2(self): | |
""" | |
test correct intermediate beam states | |
""" | |
with self.test_session() as sess: | |
table = np.array([[[0.9, 0.1, 0], | |
[0, 0.9, 0.1], | |
[0, 0, 1.0]]] * 3) | |
for cell_transform in ['default', 'flatten', 'replicate']: | |
cell = MarkovChainCell(table) | |
initial_state = cell.zero_state(1, tf.int32) | |
initial_input = initial_state[0] | |
with tf.variable_scope('test2_{}'.format(cell_transform)): | |
helper = BeamSearchHelper( | |
cell=cell, | |
beam_size=10, | |
stop_token=2, | |
initial_state=initial_state, | |
initial_input=initial_input, | |
tokens_to_inputs_fn=lambda x:tf.expand_dims(x, -1), | |
max_len=3, | |
cell_transform=cell_transform | |
) | |
_, _, final_loop_state = tf.nn.raw_rnn(helper.cell, helper.loop_fn) | |
_, _, beam_symbols, beam_logprobs = final_loop_state | |
tf.variables_initializer([cell.log_table_var]).run() | |
candidates, candidate_logprobs = sess.run((beam_symbols, beam_logprobs)) | |
assert all(candidates[0,:] == [0,0,0]) | |
assert np.isclose(np.exp(candidate_logprobs[0]), 0.9 * 0.9 * 0.9) | |
# Note that these three candidates all have the same score, and the sort order | |
# may change in the future | |
assert all(candidates[1,:] == [0,0,1]) | |
assert np.isclose(np.exp(candidate_logprobs[1]), 0.9 * 0.9 * 0.1) | |
assert all(candidates[2,:] == [0,1,1]) | |
assert np.isclose(np.exp(candidate_logprobs[2]), 0.9 * 0.1 * 0.9) | |
assert all(candidates[3,:] == [1,1,1]) | |
assert np.isclose(np.exp(candidate_logprobs[3]), 0.1 * 0.9 * 0.9) | |
assert all(np.isclose(np.exp(candidate_logprobs[4:]), 0.0)) | |
def test3(self): | |
""" | |
test that variable reuse works as expected | |
""" | |
with self.test_session() as sess: | |
table = np.array([[[0.0, 0.6, 0.4], | |
[0.0, 0.4, 0.6], | |
[0.0, 0.0, 1.0]]] * 3) | |
for cell_transform in ['default', 'flatten', 'replicate']: | |
cell = MarkovChainCell(table) | |
initial_state = cell.zero_state(1, tf.int32) | |
initial_input = initial_state[0] | |
with tf.variable_scope('test3_{}'.format(cell_transform)) as scope: | |
best_sparse, best_logprobs = beam_decoder( | |
cell=cell, | |
beam_size=7, | |
stop_token=2, | |
initial_state=initial_state, | |
initial_input=initial_input, | |
tokens_to_inputs_fn=lambda x:tf.expand_dims(x, -1), | |
max_len=5, | |
cell_transform=cell_transform, | |
output_dense=False, | |
scope=scope | |
) | |
tf.variables_initializer([cell.log_table_var]).run() | |
with tf.variable_scope(scope, reuse=True) as varscope: | |
best_sparse_2, best_logprobs_2 = beam_decoder( | |
cell=cell, | |
beam_size=7, | |
stop_token=2, | |
initial_state=initial_state, | |
initial_input=initial_input, | |
tokens_to_inputs_fn=lambda x:tf.expand_dims(x, -1), | |
max_len=5, | |
cell_transform=cell_transform, | |
output_dense=False, | |
scope=varscope | |
) | |
assert all(sess.run(tf.equal(best_sparse.values, best_sparse_2.values))) | |
assert np.isclose(*sess.run((best_logprobs, best_logprobs_2))) | |
def test4(self): | |
""" | |
test batching, with statically unknown batch size | |
""" | |
with self.test_session() as sess: | |
table = np.array([[[0.9, 0.1, 0], | |
[0, 0.9, 0.1], | |
[0, 0, 1.0]]] * 3) | |
for cell_transform in ['default', 'flatten', 'replicate']: | |
cell = MarkovChainCell(table) | |
initial_state = (tf.constant([[2],[0]]),) | |
initial_input = initial_state[0] | |
initial_input._shape = tf.TensorShape([None, 1]) | |
with tf.variable_scope('test4_{}'.format(cell_transform)): | |
helper = BeamSearchHelper( | |
cell=cell, | |
beam_size=10, | |
stop_token=2, | |
initial_state=initial_state, | |
initial_input=initial_input, | |
tokens_to_inputs_fn=lambda x:tf.expand_dims(x, -1), | |
max_len=3, | |
cell_transform=cell_transform | |
) | |
_, _, final_loop_state = tf.nn.raw_rnn(helper.cell, helper.loop_fn) | |
_, _, beam_symbols, beam_logprobs = final_loop_state | |
tf.variables_initializer([cell.log_table_var]).run() | |
candidates, candidate_logprobs = sess.run((beam_symbols, beam_logprobs)) | |
assert all(candidates[10,:] == [0,0,0]) | |
assert np.isclose(np.exp(candidate_logprobs[10]), 0.9 * 0.9 * 0.9) | |
# Note that these three candidates all have the same score, and the sort order | |
# may change in the future | |
assert all(candidates[11,:] == [0,0,1]) | |
assert np.isclose(np.exp(candidate_logprobs[11]), 0.9 * 0.9 * 0.1) | |
assert all(candidates[12,:] == [0,1,1]) | |
assert np.isclose(np.exp(candidate_logprobs[12]), 0.9 * 0.1 * 0.9) | |
assert all(candidates[13,:] == [1,1,1]) | |
assert np.isclose(np.exp(candidate_logprobs[13]), 0.1 * 0.9 * 0.9) | |
assert all(np.isclose(np.exp(candidate_logprobs[14:]), 0.0)) | |
if __name__ == '__main__': | |
test.main() |
@nikitakit I'm sorry. It looks like it was my fault. I defined my outputs_to_score_fn like this:
def score_fn(self, cell_output):
cell_output_2 = tf.reshape(cell_output, (-1, self.utterance_dec_hidden))
output = tf.matmul(cell_output_2, tf.transpose(self.w_out)) + self.b_out
output = tf.reshape(output, (-1, self.beam_size, self.vocab_size))
return log_softmax(tf.nn.relu(output))
When I changed log_softmax to softmax all started to work. Anyway, can you add an example of outputs_to_score_fn?
I just pushed a new version which fixes the num_classes
bug. It also allows for globally-normalized models via the addition of a score_upper_bound
parameter.
The score_fn
above looks fine, except for the following two points:
- You want
log_softmax
in youroutputs_to_score_fn
. Scores are added together inside beam search, and adding together raw probabilities is extremely unlikely to be what you want. (Do not usesoftmax
, I can guarantee it will give you the wrong results) - I've never seen anyone put a softmax layer right after a ReLU layer. This combination makes little sense -- it's a no-op at best and degenerates to the uniform distribution at worst. I would very much appreciate it if you could point me to a paper that does this, but I suspect that this is actually a bug in your model and that you would want to get rid of the ReLU layer.
Does it mean that I can use it but sequences can be longer? (it will be cutted later than nesessary)
The bug I was describing is only applicable to certain classes of models, and your model is not one of them. In any case, this bug is now fixed.
If I return cand_symbols, cand_logprobs every time I see the same sequences with single stop symbol within it.
This is probably an issue with your model, not with the beam search decoder. You should try calculating the score of the single-stop-symbol sequence under your model, as well as the score of the other sequence you're comparing to -- I think you'll find that the single-stop-symbol sequence scores higher. (This is typical for a randomly-initialized model, but should go away once you've trained the model for long enough.)
@nikitakit Thank you for answers and improvements! I'll try again.
I would very much appreciate it if you could point me to a paper that does this, but I suspect that this is actually a bug in your model and that you would want to get rid of the ReLU layer.
I can't point a paper. I didn't think that it could hurt performance. Thank you that you noticed this.
@nikitakit
Can you provide an example on how to use this with the seq2seq interface provided with tensorflow?
@gidim There are usage instructions at the top of tf_beam_decoder.py
about how to use beam search. Plugging it into your model should be extremely straightforward. If you are having issues, could you post a code snippet here? (I can try to help you debug)
there is a bug in calculating logprobs_done.
it has to be divided by time length.
it should be logprobs_done = tf.reshape(logprobs_batched, [-1, self.beam_size, num_classes])[:, :, self.stop_token] / tf.float(time)
@fodrh1201 Why do you say this is a bug? I've certainly seen people normalize scores by sequence length before, but as far as I know that's a non-standard modification of beam search. Vanilla beam search just finds the most-probable sequence without considering length at all.
@nikitakit
hi, I use your beam_decoder and find that when setting beam_size to 1, the predicted result is still different from that predicted by a model which uses greedy search. Is it a normal situation?
Here is the code for tokens_to_inputs_fn and outputs_to_score_fn:
- tokens_to_inputs_fn
def tokens_to_intputs_fn(model_predictions):
_input = tf.nn.embedding_lookup(embeddings, model_predictions)
return _input
- outputs_to_score_fn
def outputs_to_score_fn(model_output):
output_logits = tf.reshape(model_output, (-1, self.num_lstm_units))
# fully connected layer to creat the probability ditribution over the vocabulary
output_logits = tf.add(tf.matmul(output_logits, W), b)
output_logits = tf.reshape(output_logits, (-1, self.beam_size, self.vocab_size))
return tf.nn.log_softmax(output_logits)
@wanpifeng4ever Maybe the difference has to do with handling of stop tokens?
Imagine a model that always outputs a 90% probability of CONTINUE token and 10% probability of STOP token. Under greedy decode the output will be an infinite sequence of CONTINUE tokens (though in practice will probably be a hard-enforced length limit), but under beam search the output will just be a single STOP token.
I recommend you find a case where the two behaviors aren't the same for your model and examine in more detail the outputs from greedy and beam decode, their scores, and the scores along the way to the outputs.
@nikitakit hey! does this work with TF 1.0? thanks!
@nikitakit I tried this with version 1.1.0. After modifying some api changes, I'm stuck with the error:
alueError: Attempt to reuse RNNCell <tensorflow.contrib.rnn.python.ops.core_rnn_cell_impl.BasicLSTMCell object at 0x7f16c0ca3588> with a different variable scope than its first use. First use of cell was with scope 'seq2seq_att/social_bot/Decoder/decoder/decoder/basic_lstm_cell', this attempt is with scope 'seq2seq_att/social_bot/Decoder/decoder/rnn/basic_lstm_cell'
at this line: output_k, next_state_k = self.cell(inputs_k, state_k,scope=scope)
@nikitakit I have some questions about outputs_to_score_fn and the return value.
- what's the expect input shape and output shape of this function?
- the output should be the log_softmax results instead of the logits before the softmax, right?
- if I want to get n best list, what should I do ?
Thanks!
@avostryakov did you solve your problem? I think I have exactly same problem with you. the cand_symbols is just sequence of stop tokens...
Does it mean that I can use it but sequences can be longer? (it will be cutted later than nesessary)