Last active
August 29, 2015 14:11
-
-
Save nightuser/ba3e21b4cc43da1ba172 to your computer and use it in GitHub Desktop.
Torus topology interconnection interpolation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import itertools | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from scipy.spatial import Delaunay | |
points = np.array([ | |
[0, 0], | |
[0, 2], | |
[2, 0], | |
[0.5, 0.5] | |
]) | |
values = np.array([1, 1, 1, 4]) | |
xi = np.array([ | |
[0.3, 0.2], | |
[0.7, 1.8] | |
]) | |
def make_toroidal(points, values): | |
shifts = [ | |
np.amax(points[:, i]) - np.amin(points[:, i]) | |
for i in xrange(points.shape[1]) | |
] | |
directions = np.array([0, 1, -1]) | |
all_shifts = itertools.product(*[ | |
directions * shift for shift in shifts | |
]) | |
toroidal = np.empty((0,) + points.shape[1:]) | |
for total_shift in all_shifts: | |
toroidal = np.append(toroidal, points + np.array(total_shift), axis=0) | |
repeated_values = np.tile(values, 3 ** points.shape[1]) | |
return toroidal, repeated_values | |
def find_barycentric(p, simplex): | |
start = simplex[:-1] | |
last = simplex[-1] | |
t = np.transpose(np.matrix(start) - last) | |
coords = np.linalg.solve(t, p - last) # Cramer? third thing to think of | |
return np.append(coords, 1 - sum(coords)) | |
def do_interpolation(points, values, xi, fill_value=np.nan): | |
tri = Delaunay(points) # first thing to implement | |
results = np.zeros(xi.shape[0]) | |
for i in xrange(xi.shape[0]): | |
p = xi[i] | |
isimplex = tri.find_simplex(p) # second thing to implement | |
if isimplex == -1: | |
results[i] = fill_value | |
continue | |
simplex_indices = tri.simplices[isimplex] | |
vs = np.array( | |
[values[x] for x in simplex_indices] | |
) | |
if np.isnan(vs).any(): | |
results[i] = fill_value | |
continue | |
simplex = np.array( | |
[points[x] for x in simplex_indices] | |
) | |
barycentric_coords = find_barycentric(p, simplex) | |
results[i] = np.dot(barycentric_coords, vs) | |
return results, tri.simplices | |
def add_plot(id, title, results, simplices): | |
plt.subplot(id) | |
plt.title(title) | |
plt.triplot(points[:, 0], points[:, 1], simplices.copy()) | |
plt.plot(points[:, 0], points[:, 1], 'o') | |
plt.plot(xi[:, 0], xi[:, 1], 'o') | |
for point, value in itertools.chain( | |
itertools.izip(points, values), | |
itertools.izip(xi, results) | |
): | |
plt.annotate(float(value), point) | |
plt.figure(1) | |
add_plot(211, 'Standard', *do_interpolation(points, values, xi)) | |
points, values = make_toroidal(points, values) | |
add_plot(212, 'Torus', *do_interpolation(points, values, xi)) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment