Created
July 22, 2024 22:29
-
-
Save nicoguaro/e834d510ca9bcdca07da9d62f2f66b58 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
from scipy.integrate import trapezoid, simpson, quad | |
repo = "https://raw.githubusercontent.com/nicoguaro/matplotlib_styles/master" | |
style = repo + "/styles/clean.mplstyle" | |
plt.style.use(style) | |
plt.rcParams["font.size"] = 20 | |
plt.rcParams["lines.linewidth"] = 3 | |
np.random.seed(69) | |
a = 1 | |
b = 20 | |
fun = lambda x: np.cos(x)**2 | |
fun = lambda x: np.sin(x)/x | |
inte_ex, _ = quad(fun, a, b) | |
npts_list = np.logspace(1, 6, 50, dtype=int) | |
intes = [] | |
errors = [] | |
intes_r = [] | |
errors_r = [] | |
intes_t = [] | |
errors_t = [] | |
intes_s = [] | |
errors_s = [] | |
for npts in npts_list: | |
x = np.random.uniform(a, b, npts) | |
x = np.sort(x) | |
xm = (x[:-1] + x[1:])/2 | |
dx = xm[1:] - xm[:-1] | |
f = fun(x) | |
# Monte Carlo | |
inte = (b - a)*np.mean(f) | |
intes.append(inte) | |
errors.append(np.abs(inte - inte_ex)/inte_ex) | |
# Riemman | |
inte = np.dot(f[1:-1], dx) + f[0] * (xm[0] - a) + f[-1]*(b - xm[-1]) | |
intes_r.append(inte) | |
errors_r.append(np.abs(inte - inte_ex)/inte_ex) | |
# Trapezoid | |
x2 = np.concatenate(([a], x, [b])) | |
f2 = fun(x2) | |
inte = trapezoid(f2, x2) | |
intes_t.append(inte) | |
errors_t.append(np.abs(inte - inte_ex)/inte_ex) | |
# Simpson | |
inte = simpson(f2, x2) | |
intes_s.append(inte) | |
errors_s.append(np.abs(inte - inte_ex)/inte_ex) | |
plt.figure() | |
plt.loglog(npts_list, errors, "o", label="Monte Carlo") | |
plt.loglog(npts_list, errors_r, "^", label="Random midpoint") | |
plt.loglog(npts_list, errors_t, "v", label="Random trapezoid") | |
plt.loglog(npts_list, errors_s, "s", label="Random Simpson") | |
#plt.loglog(npts_list, 1/np.sqrt(npts_list), label="$1/\sqrt{n}$") | |
#plt.loglog(npts_list, 1/npts_list, label="$1/n$") | |
#plt.loglog(npts_list, 1/npts_list**2, label="$1/n^2$") | |
#plt.loglog(npts_list, 1/npts_list**3, label="$1/n^3$") | |
plt.xlabel("Number of points") | |
plt.ylabel("Relative error") | |
plt.legend(loc=3) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment