Skip to content

Instantly share code, notes, and snippets.

@neubig
Last active October 19, 2022 09:50
Show Gist options
  • Save neubig/86c7d1730016fe1337b0d3577f1845dc to your computer and use it in GitHub Desktop.
Save neubig/86c7d1730016fe1337b0d3577f1845dc to your computer and use it in GitHub Desktop.
Examples of linear algebra in numpy
import numpy as np
import sys
################# Explanation ##################
# This is a function to calculate house prices h(x) = -40 + 0.25x
# The first term (-40) is the base price, and "x" is the number of square feet in the house
################################################
# Set up the function
my_function = np.array([-40, 0.25])
# Read the data from the file
with open(sys.argv[1], "r") as my_file:
my_data = np.loadtxt(my_file)
# Take the dot product
my_result = my_data.dot(my_function)
# Print the result
for x in my_result:
print(x)
# This is a numpy implementation of the linear algebra tutorial from
# Andrew Ng's machine learning class:
# https://class.coursera.org/ml-005/lecture
import numpy as np
##### Matricies and Vectors
# Define two arrays, one 4x3, one 3x2
A = np.array([[1402, 191], [1371, 821], [949, 1437], [147, 1448]])
B = np.array([[1, 2, 3], [4, 5, 6]])
# Print the dimensions of each
print(A.shape)
print(B.shape)
# Print some of the elements
# NOTE: Elements are zero-indexed, so the first element will be 0,0
print(A[0,0])
print(A[0,1])
print(A[2,1])
print(A[3,0])
# Define a 4 x 1 vector
y = np.array([460, 232, 315, 178])
##### Addition and Scalar Multiplication
# Define two arrays
A = np.array([[1, 0 ], [2, 5], [3, 1]])
B = np.array([[4, 0.5], [2, 5], [0, 1]])
# Add them together
print(A+B)
# Multiply/divide by a scalar
print(3*A)
print(A/4)
##### Matrix/vector Multiplication
# Define an matrix and a vector
A = np.array([[1, 3], [4, 0], [2, 1]])
y = np.array([1, 5])
# Perform matrix/vector multiplication
print(A.dot(y))
# Calculate the function
data = np.array([[1, 2104], [1, 1416], [1, 1534], [1, 852]])
func = np.array([-40, 0.25])
print(data.dot(func))
##### Matrix/matrix Multiplication
# Define matrices and multiply them
A = np.array([[1, 3, 2], [4, 0, 1]])
B = np.array([[1, 3], [0, 1], [5, 2]])
print(A.dot(B))
##### Matrix properties
# Test the commutative property
A = np.array([[1, 1], [0, 0]])
B = np.array([[0, 0], [2, 0]])
print(A.dot(B))
print(B.dot(A))
# Test the associative property
C = np.array([[1, 2, 3], [4, 5, 6]])
print(A.dot(B.dot(C)))
print(A.dot(B).dot(C))
# Create and use the identity matrix
I = np.identity(2)
print(A.dot(I))
print(I.dot(A))
##### Inverse and transpose
# Test the inverse
A = np.array([[1, 2], [3, 4]])
Ainv = np.linalg.inv(A)
print(Ainv)
print(Ainv.dot(A))
A = np.array([[1, 1], [0, 0]])
Ainv = np.linalg.inv(A)
# Transpose
A = np.array([[1, 2], [3, 4]])
print(np.transpose(A))
import timeit
import numpy as np
##### Compare 1000x1000 matrix-matrix multiplication speed
# Set up the variables
SIZE = 200
A = np.random.rand(SIZE,SIZE)
B = np.random.rand(SIZE,SIZE)
# Try the naive way in Python
start = timeit.default_timer()
# --> Matrix multiplication in pure Python
out2 = np.zeros((SIZE,SIZE))
for i in range(SIZE):
for j in range(SIZE):
for k in range(SIZE):
out2[i,k] += A[i,j]*B[j,k]
time_spent = timeit.default_timer() - start
print(time_spent)
# Try using numpy
start = timeit.default_timer()
# --> Matrix multiplication in numpy
out1 = A.dot(B)
time_spent = timeit.default_timer() - start
print(time_spent)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment