Skip to content

Instantly share code, notes, and snippets.

@neubig
Last active May 21, 2018 06:01
Show Gist options
  • Save neubig/7d874d327e7d700bb609479f6cf359bb to your computer and use it in GitHub Desktop.
Save neubig/7d874d327e7d700bb609479f6cf359bb to your computer and use it in GitHub Desktop.
A small sequence labeler in DyNet
"""
DyNet implementation of a sequence labeler (POS taggger).
This is a translation of this tagger in PyTorch: https://gist.github.com/hal3/8c170c4400576eb8d0a8bd94ab231232
Basic architecture:
- take words
- run though bidirectional GRU
- predict labels one word at a time (left to right), using a recurrent neural network "decoder"
The decoder updates hidden state based on:
- most recent word
- the previous action (aka predicted label).
- the previous hidden state
Wall-clock time for PyTorch: 14.309s
Wall-clock time for DyNet: 1.749s
"""
from __future__ import division
import random
import pickle
import dynet as dy
import numpy as np
def reseed(seed=90210):
random.seed(seed)
# torch.manual_seed(seed)
reseed()
class Example(object):
def __init__(self, tokens, labels, n_labels):
self.tokens = tokens
self.labels = labels
self.n_labels = n_labels
def minibatch(data, minibatch_size, reshuffle):
if reshuffle:
random.shuffle(data)
for n in xrange(0, len(data), minibatch_size):
yield data[n:n+minibatch_size]
def bi_gru(f_gru, b_gru, embed):
f_emb = f_gru.initial_state().transduce(embed)
b_emb = reversed(b_gru.initial_state().transduce(reversed(embed)))
return [dy.concatenate([f,b]) for f,b in zip(f_emb,b_emb)]
def test_wsj():
print
print '# test on wsj subset'
data, n_types, n_labels = pickle.load(open('wsj.pkl', 'r'))
d_emb = 50
d_rnn = 51
d_hid = 52
d_actemb = 5
minibatch_size = 5
n_epochs = 10
preprocess_minibatch = True
model = dy.ParameterCollection()
embed_word = model.add_lookup_parameters((n_types, d_emb))
f_gru = dy.GRUBuilder(1, d_emb, d_rnn, model)
b_gru = dy.GRUBuilder(1, d_emb, d_rnn, model)
embed_action = model.add_lookup_parameters((n_labels, d_actemb))
combine_arh_W = model.add_parameters((d_hid, d_actemb + d_rnn * 2 + d_hid))
combine_arh_b = model.add_parameters(d_hid)
initial_h = model.add_parameters(d_hid, dy.ConstInitializer(0))
initial_actemb = model.add_parameters(d_actemb, dy.ConstInitializer(0))
policy_W = model.add_parameters((n_labels, d_hid))
policy_b = model.add_parameters(n_labels)
optimizer = dy.AdamTrainer(model, alpha=0.01)
for _ in xrange(n_epochs):
total_loss = 0
for batch in minibatch(data, minibatch_size, True):
dy.renew_cg()
combine_arh_We = dy.parameter(combine_arh_W)
combine_arh_be = dy.parameter(combine_arh_b)
policy_We = dy.parameter(policy_W)
policy_be = dy.parameter(policy_b)
loss = 0
if preprocess_minibatch:
# for efficiency, combine RNN outputs on entire
# minibatch in one go (requires padding with zeros,
# should be masked but isn't right now)
all_tokens = [ex.tokens for ex in batch]
max_length = max(map(len, all_tokens))
all_tokens = [[x[i] if len(x) > i else 0 for x in all_tokens] for i in range(max_length)]
all_e = [dy.lookup_batch(embed_word, x) for x in all_tokens]
all_rnn_out = bi_gru(f_gru, b_gru, all_e)
losses = []
for batch_id, ex in enumerate(batch):
N = len(ex.tokens)
if preprocess_minibatch:
rnn_out = [dy.pick_batch_elem(x, batch_id) for x in all_rnn_out[:N]]
else:
e = [embed_word[x] for x in ex.tokens]
rnn_out = bi_gru(f_gru, b_gru, e)
prev_h = dy.parameter(initial_h) # previous hidden state
actemb = dy.parameter(initial_actemb) # embedding of previous action
output = []
for t in xrange(N):
# update hidden state based on most recent
# *predicted* action (not ground truth)
inputs = [actemb, prev_h, rnn_out[t]]
h = dy.rectify(dy.affine_transform([combine_arh_be, combine_arh_We, dy.concatenate(inputs)]))
# make prediction
pred_vec = dy.affine_transform([policy_be, policy_We, h])
pred = pred_vec.npvalue().argmin()
output.append(pred)
# accumulate loss (squared error against costs)
truth = np.ones(n_labels)
truth[ex.labels[t]] = 0
losses.append(dy.squared_distance(pred_vec, dy.inputTensor(truth)))
# cache hidden state, previous action embedding
prev_h = h
actemb = embed_action[pred]
# print 'output=%s, truth=%s' % (output, ex.labels)
loss = dy.esum(losses)
loss.backward()
total_loss += loss.value()
optimizer.update()
print total_loss
if __name__ == '__main__':
test_wsj()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment