Created
September 10, 2012 02:41
-
-
Save neubig/3688522 to your computer and use it in GitHub Desktop.
An example implementation of the String Rewriting Kernel in python
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/python | |
# A python implementation of the string rewriting kernel | |
# by Graham Neubig | |
# | |
# Reference: | |
# Fan Bu, Hang Li, Xiaoyan Zhu. "String Rewriting Kernel". ACL 2012 | |
# http://aclweb.org/anthology-new/P/P12/P12-1047.pdf | |
from math import factorial | |
from collections import defaultdict | |
# Convert two strings into maps counting doubles. This is "#_e" in the paper. | |
def double_count(s1, s2): | |
ret = defaultdict(lambda: 0) | |
for k, v1 in enumerate(s1): | |
ret[(v1, s2[k])] += 1 | |
return ret | |
# Convert two strings into maps counting only doubles where the values | |
# differ. This is useful, only k-grams with exactly the same profile of | |
# differing values will have any valid rewrite rules. (As mentioned in | |
# 5.2.3). This is "#_N" in the paper. | |
def inequal_double_count(s1, s2): | |
ret = defaultdict(lambda: 0) | |
for k, v1 in enumerate(s1): | |
if v1 != s2[k]: | |
ret[(v1, s2[k])] += 1 | |
return ret | |
# Calculate the binomial coefficient | |
def binomial(n, k): | |
return factorial(n) // (factorial(k) * factorial(n - k)) | |
# Compute the number of possible combinations of rewrite rules allowed by | |
# a particular double pair | |
# (description (3), (1), (2) on the bottom of page 5 of the paper | |
def alpha_val(i, e, num_es, num_et): | |
if e[0] == e[1]: | |
return binomial(num_es, i) * binomial(num_et, i) * factorial(i) | |
elif (num_es != num_et) or (i != num_es): | |
return 0 | |
else: | |
return factorial(i) | |
# Compute the number of matched rewriting rules for two double counts of a | |
# k-gram. Implements function g_e (lines 3-8 of algorithm 1) in the paper | |
def double_count_kernel(asD, atD, lam = 1): | |
result = 1.0 | |
# Find all e where at least one of the values is identical | |
for e in dict(asD.items()+atD.items()).keys(): | |
# Save the number of matches for both | |
num_es = asD.get(e, 0) | |
num_et = atD.get(e, 0) | |
num_e = min(num_es, num_et) | |
# ge saves the kernel value | |
ge = 0.0 | |
# Calculate the number of matches | |
for i in range(0, num_e+1): | |
ge += alpha_val(i, e, num_es, num_et) * (lam ** (2*i)) | |
result *= ge | |
# If the result is zero, return | |
if result == 0: | |
return result | |
return result | |
# Compute the number of matched rewriting rules for two k-grams | |
# Implements algorithm 1 from the paper | |
def kgram_kernel(as1, at1, as2, at2, lam = 1): | |
asD = double_count(as1,as2) | |
atD = double_count(at1,at2) | |
return double_count_kernel(asD, atD, lam) | |
# # According to the paper, this should be: | |
# # 12\lambda^{12} + 24\lambda^{10} + 14\lambda^8 + 2\lambda^6 | |
# # These tests check that this is correct. | |
# print kgram_kernel(list('abbccbb'), list('cbcbbcb'), list('abcccdd'), list('cbccdcd')) | |
# print kgram_kernel(list('abbccbb'), list('cbcbbcb'), list('abcccdd'), list('cbccdcd'), .5) | |
# Compute the total number of matched rewriting rules for two sentence pairs | |
# Implements algorithm 2 from the paper | |
def string_rewriting_kernel(s1, t1, s2, t2, k): | |
# Initialize the maps and counters | |
ms = defaultdict(lambda: defaultdict(lambda: 0)) | |
mt = defaultdict(lambda: defaultdict(lambda: 0)) | |
# For each k-gram in s1 | |
for pos1 in range(0, len(s1)-k+1): | |
as1 = s1[pos1 : pos1+k] | |
# For each k-gram in s2 | |
for pos2 in range(0, len(s2)-k+1): | |
as2 = s2[pos2 : pos2+k] | |
sharp_N = inequal_double_count(as1, as2) | |
sharp_all = double_count(as1, as2) | |
ms[repr(sharp_N.items())][repr(sharp_all.items())] += 1 | |
# For each k-gram in t1 | |
for pos1 in range(0, len(t1)-k+1): | |
at1 = t1[pos1 : pos1+k] | |
# For each k-gram in t2 | |
for pos2 in range(0, len(t2)-k+1): | |
at2 = t2[pos2 : pos2+k] | |
sharp_N = inequal_double_count(at1, at2) | |
sharp_all = double_count(at1, at2) | |
mt[repr(sharp_N.items())][repr(sharp_all.items())] += 1 | |
# For each key and value that exists in both maps | |
result = 0 | |
for key in ms.keys(): | |
if key not in mt: | |
continue | |
# Calculate and add the kernel | |
for s_dub, s_cnt in ms[key].items(): | |
for t_dub, t_cnt in mt[key].items(): | |
result += s_cnt * t_cnt * double_count_kernel( | |
dict(eval(s_dub)), | |
dict(eval(t_dub))) | |
return result | |
print string_rewriting_kernel( | |
('he', 'hit', 'the', 'small', 'cat'), | |
('he', 'walloped', 'the', 'small', 'feline'), | |
('he', 'hit', 'a', 'big', 'robber'), | |
('he', 'walloped', 'a', 'big', 'catthief'), | |
3 | |
); | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment