Last active
February 27, 2017 18:43
-
-
Save ncullen93/66c1803f9a3dccd1d63b041c90ecf784 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def transform_matrix_offset_center(matrix, x, y): | |
o_x = float(x) / 2 + 0.5 | |
o_y = float(y) / 2 + 0.5 | |
offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]]) | |
reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]]) | |
transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix) | |
return transform_matrix | |
def apply_transform(x, transform_matrix, channel_axis=2, fill_mode='nearest', fill_value=0.): | |
x = np.rollaxis(x, channel_axis, 0) | |
x = x.astype('float32') | |
final_affine_matrix = transform_matrix[:2, :2] | |
final_offset = transform_matrix[:2, 2] | |
channel_images = [ndi.interpolation.affine_transform(x_channel, final_affine_matrix, | |
final_offset, order=0, mode=fill_mode, cval=fill_value) for x_channel in x] | |
x = np.stack(channel_images, axis=0) | |
x = np.rollaxis(x, 0, channel_axis + 1) | |
return x | |
def random_transform_fn(x, y, T): | |
""" | |
Randomly transform an image from the given parameters | |
Transforms: | |
- rotate | |
- shift | |
- shear | |
- zoom | |
- flip | |
Arguments | |
--------- | |
x : np.ndarray | |
y : np.ndarray | |
T : dictionary | |
holds values for the various transforms | |
example: | |
T = { | |
"rotation_range" : 15, | |
"shift_range" : [0.3,0.3], | |
"shear_range" : 0.1, | |
"zoom_range" : [1,1.4], | |
"horizontal_flip" : True, | |
"vertical_flip" : False, | |
"x_fill_mode" : "constant", | |
"y_fill_mode" : "nearest", | |
"fill_value" : 0 | |
} | |
""" | |
# only support tf ordering | |
orig_dim = x.ndim | |
if y is not None: | |
orig_ydim = y.ndim | |
if x.ndim == 2: | |
x = np.expand_dims(x,-1) | |
if y is not None and y.ndim == 2: | |
y = np.expand_dims(y,-1) | |
img_row_axis = 0 | |
img_col_axis = 1 | |
channel_axis = 2 | |
### ROTATION | |
if T['rotation_range'] > 0: | |
theta = np.pi / 180 * np.random.uniform(-T['rotation_range'], | |
T['rotation_range']) | |
else: | |
theta = 0 | |
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], | |
[np.sin(theta), np.cos(theta), 0], | |
[0, 0, 1]]) | |
### SHIFT HEIGHT | |
if T['shift_range'][0] > 0: | |
tx = np.random.uniform(-T['shift_range'][0], | |
T['shift_range'][0]) * x.shape[img_row_axis] | |
else: | |
tx = 0 | |
### SHIFT WIDTH | |
if T['shift_range'][1] > 0: | |
ty = np.random.uniform(-T['shift_range'][1], | |
T['shift_range'][1]) * x.shape[img_col_axis] | |
else: | |
ty = 0 | |
translation_matrix = np.array([[1, 0, tx], | |
[0, 1, ty], | |
[0, 0, 1]]) | |
### SHEAR | |
if T['shear_range'] > 0: | |
shear = np.random.uniform(-T['shear_range'],T['shear_range']) | |
else: | |
shear = 0 | |
shear_matrix = np.array([[1, -np.sin(shear), 0], | |
[0, np.cos(shear), 0], | |
[0, 0, 1]]) | |
### ZOOM | |
if T['zoom_range'][0] == 1. and T['zoom_range'][1] == 1.: | |
zx, zy = 1, 1 | |
else: | |
zx, zy = np.random.uniform(T['zoom_range'][0], T['zoom_range'][1], 2) | |
zoom_matrix = np.array([[zx, 0, 0], | |
[0, zy, 0], | |
[0, 0, 1]]) | |
### COMBINE MATRICES INTO ONE TRANSFORM MATRIX | |
transform_matrix = np.dot(np.dot(np.dot(rotation_matrix, | |
translation_matrix), | |
shear_matrix), | |
zoom_matrix) | |
h, w = x.shape[img_row_axis], x.shape[img_col_axis] | |
### APPLY COMBINED TRANSFORM ON X IMAGE | |
transform_matrix = transform_matrix_offset_center(transform_matrix, h, w) | |
x = apply_transform(x, transform_matrix, channel_axis, | |
fill_mode=T['x_fill_mode'], fill_value=T['fill_value']) | |
### APPLY COMBINED TRANSFORM ON Y IMAGE | |
if y is not None: | |
y = apply_transform(y, transform_matrix, channel_axis, | |
fill_mode=T['y_fill_mode'], fill_value=T['fill_value']) | |
### HORIZONTAL FLIP | |
if T['horizontal_flip'] == True: | |
if np.random.random() < 0.5: | |
x = np.asarray(x).swapaxes(img_col_axis, 0) | |
x = x[::-1, ...] | |
x = x.swapaxes(0, img_col_axis) | |
if y is not None: | |
y = np.asarray(y).swapaxes(img_col_axis, 0) | |
y = y[::-1, ...] | |
y = y.swapaxes(0, img_col_axis) | |
### VERTICAL FLIP | |
if T['vertical_flip']: | |
if np.random.random() < 0.5: | |
x = np.asarray(x).swapaxes(img_row_axis, 0) | |
x = x[::-1, ...] | |
x = x.swapaxes(0, img_row_axis) | |
if y is not None: | |
y = np.asarray(y).swapaxes(img_row_axis, 0) | |
y = y[::-1, ...] | |
y = y.swapaxes(0, img_row_axis) | |
if orig_dim == 2: | |
x = np.squeeze(x) | |
if y is not None and orig_ydim == 2: | |
y = np.squeeze(y) | |
return x, y | |
else: | |
return x, y |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment