Skip to content

Instantly share code, notes, and snippets.

@mikelove
Last active April 6, 2024 01:11
Show Gist options
  • Save mikelove/74bbf5c41010ae1dc94281cface90d32 to your computer and use it in GitHub Desktop.
Save mikelove/74bbf5c41010ae1dc94281cface90d32 to your computer and use it in GitHub Desktop.
Exploring behavior of t-SNE on linear data
n <- 200
m <- 40
set.seed(1)
x <- runif(n, -1, 1)
library(rafalib)
bigpar(2,2,mar=c(3,3,3,1))
library(RColorBrewer)
cols <- brewer.pal(11, "Spectral")[as.integer(cut(x, 11))]
plot(x, rep(0,n), ylim=c(-1,1), yaxt="n", xlab="", ylab="",
col=cols, pch=20, main="underlying data")
library(pracma)
ortho <- rortho(m)
X <- cbind(x, matrix(0,ncol=m-1,nrow=n)) %*% ortho
plot(X[,1:2], asp=1, col=cols, pch=20, xlab="", ylab="", main="embed in higher dim")
pc <- prcomp(X)
plot(pc$x[,1:2], asp=1, col=cols, pch=20, xlab="", ylab="", main="PC1 & PC2")
library(tsne)
res <- tsne(X)
plot(res, col=cols, pch=20, xlab="", ylab="", main="t-SNE")
bigpar(2,2,mar=c(3,3,1,1))
for (i in 2:5) {
set.seed(i)
x <- runif(n, -1, 1)
cols <- brewer.pal(11, "Spectral")[as.integer(cut(x, 11))]
ortho <- rortho(m)
X <- cbind(x, matrix(0,ncol=m-1,nrow=n)) %*% ortho
res <- tsne(X)
plot(res, col=cols, pch=20, xlab="", ylab="")
}
@federicomarini
Copy link

I did notice that too but did not explore it systematically.
Thanks to you all for triggering the extra interest with the gist discussion!

@aboyle
Copy link

aboyle commented Jun 3, 2016

How about this mixture of Gaussians example.

library(Rtsne)
library(tsne)
library(RColorBrewer)
cols <- brewer.pal(4, "Dark2")

#build 200 samples with 1000 'genes' in 4 distinct clusters
set.seed(1)
dat<-matrix(rnorm(200000,0,1),1000,200)
cen1<-rnorm(1000,0,1)
cen2<-rnorm(1000,0,1)
cen3<-rnorm(1000,0,1)
cen4<-rnorm(1000,0,1)
sim2<-dat
sim2[,1:50]<-dat[,1:50]+cen1
sim2[,51:100]<-dat[,51:100]+cen2
sim2[,101:150]<-dat[,101:150]+cen3
sim2[,151:200]<-dat[,151:200]+cen4
colors <- c(rep(cols[1], 50), rep(cols[2],50), rep(cols[3], 50), rep(cols[4], 50))

par(mfrow=c(1, 2))
#t-SNE
tmp<-tsne(t(sim2))
plot(tmp, col=colors, pch=20, xlab="", ylab="", main="tsne")

#Alternative implementation
tmp<-Rtsne(t(sim2), check_duplicates=FALSE)
plot(tmp$Y,col=colors,  pch=20, xlab="", ylab="", main="Rtsne")

gaus

@JerryDing
Copy link

Well, there is a bug in the tsne package:
gains = (gains + .2) * abs(sign(grads) != sign(incs))
+ gains * .8 * abs(sign(grads) == sign(incs))
change it to
gains = (gains + .2) * abs(sign(grads) != sign(incs)) + gains * .8 * abs(sign(grads) == sign(incs))

Also, for the MOG case, you need to set the parameter whiten=FALSE. Then you can get the correct results:

image

image

image

@ShanSabri
Copy link

Have these changes been committed?

@ranijames
Copy link

Could any help me interpreting the pattern behind the tsne plots?I have done on a small dataset I have clusters .Which I have hard time interpreting...

@mikelove
Copy link
Author

mikelove commented Jul 4, 2016

The fix proposed by @JerryDing has been incorporated into tsne package v0.1.3 by @jdonaldson here:

https://github.com/jdonaldson/rtsne

and has been sent to CRAN.

@Orbmac
Copy link

Orbmac commented Jan 24, 2019

@JerryDing Im sorry but I fail to see any different in your change. What's different?

The change you proposed where change in github but, at least for me, the change is just a copy of what was already there.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment