Skip to content

Instantly share code, notes, and snippets.

@migurski
Created September 9, 2012 02:21
Show Gist options
  • Save migurski/3682135 to your computer and use it in GitHub Desktop.
Save migurski/3682135 to your computer and use it in GitHub Desktop.
Adaptation of Nicolas P. Rougier’s Gray-Scott implementation with the Glumpy dependencies removed
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# -----------------------------------------------------------------------------
# Copyright INRIA
# Contributors: Nicolas P. Rougier ([email protected])
#
# DANA is a computing framework for the simulation of distributed,
# asynchronous, numerical and adaptive models.
#
# This software is governed by the CeCILL license under French law and abiding
# by the rules of distribution of free software. You can use, modify and/ or
# redistribute the software under the terms of the CeCILL license as circulated
# by CEA, CNRS and INRIA at the following URL
# http://www.cecill.info/index.en.html.
#
# As a counterpart to the access to the source code and rights to copy, modify
# and redistribute granted by the license, users are provided only with a
# limited warranty and the software's author, the holder of the economic
# rights, and the successive licensors have only limited liability.
#
# In this respect, the user's attention is drawn to the risks associated with
# loading, using, modifying and/or developing or reproducing the software by
# the user in light of its specific status of free software, that may mean that
# it is complicated to manipulate, and that also therefore means that it is
# reserved for developers and experienced professionals having in-depth
# computer knowledge. Users are therefore encouraged to load and test the
# software's suitability as regards their requirements in conditions enabling
# the security of their systems and/or data to be ensured and, more generally,
# to use and operate it in the same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
# -----------------------------------------------------------------------------
'''
Reaction Diffusion : Gray-Scott model
References:
----------
Complex Patterns in a Simple System
John E. Pearson, Science 261, 5118, 189-192, 1993.
'''
from sys import stderr
from itertools import product
import numpy as np
import scipy.sparse as sp
def convolution_matrix(src, dst, kernel, toric=True):
'''
Build a sparse convolution matrix M such that:
(M*src.ravel()).reshape(src.shape) = convolve2d(src,kernel)
You can specify whether convolution is toric or not and specify a different
output shape. If output (dst) is different, convolution is only applied at
corresponding normalized location within the src array.
Building the matrix can be pretty long if your kernel is big but it can
nonetheless saves you some time if you need to apply several convolution
compared to fft convolution (no need to go to the Fourier domain).
Parameters:
-----------
src : n-dimensional numpy array
Source shape
dst : n-dimensional numpy array
Destination shape
kernel : n-dimensional numpy array
Kernel to be used for convolution
Returns:
--------
A sparse convolution matrix
Examples:
---------
>>> Z = np.ones((3,3))
>>> M = convolution_matrix(Z,Z,Z,True)
>>> print (M*Z.ravel()).reshape(Z.shape)
[[ 9. 9. 9.]
[ 9. 9. 9.]
[ 9. 9. 9.]]
>>> M = convolution_matrix(Z,Z,Z,False)
>>> print (M*Z.ravel()).reshape(Z.shape)
[[ 4. 6. 4.]
[ 6. 9. 6.]
[ 4. 6. 4.]]
'''
# Get non NaN value from kernel and their indices.
nz = (1 - np.isnan(kernel)).nonzero()
data = kernel[nz].ravel()
indices = [0,]*(len(kernel.shape)+1)
indices[0] = np.array(nz)
indices[0] += np.atleast_2d((np.array(src.shape)//2 - np.array(kernel.shape)//2)).T
# Generate an array A for a given shape such that given an index tuple I,
# we can translate into a flat index F = (I*A).sum()
to_flat_index = np.ones((len(src.shape),1), dtype=int)
if len(src.shape) > 1:
to_flat_index[:-1] = src.shape[1]
R, C, D = [], [], []
dst_index = 0
src_indices = []
# Translate target tuple indices into source tuple indices taking care of
# possible scaling (this is done by normalizing indices)
for i in range(len(src.shape)):
z = np.rint((np.linspace(0,1,dst.shape[i])*(src.shape[i]-1))).astype(int)
src_indices.append(z)
nd = [0,]*(len(kernel.shape))
for index in np.ndindex(dst.shape):
dims = []
# Are we starting a new dimension ?
if index[-1] == 0:
for i in range(len(index)-1,0,-1):
if index[i]: break
dims.insert(0,i-1)
dims.append(len(dst.shape)-1)
for dim in dims:
i = index[dim]
if toric:
z = (indices[dim][dim] - src.shape[dim]//2 +(kernel.shape[dim]+1)%2 + src_indices[dim][i]) % src.shape[dim]
else:
z = (indices[dim][dim] - src.shape[dim]//2 +(kernel.shape[dim]+1)%2 + src_indices[dim][i])
n = np.where((z >= 0)*(z < src.shape[dim]))[0]
if dim == 0:
nd[dim] = n.copy()
else:
nd[dim] = nd[dim-1][n]
indices[dim+1] = np.take(indices[dim], n, 1)
indices[dim+1][dim] = z[n]
dim = len(dst.shape)-1
z = indices[dim+1]
R.extend( [dst_index,]*len(z[0]) )
C.extend( (z*to_flat_index).sum(0).tolist() )
D.extend( data[nd[-1]].tolist() )
dst_index += 1
return sp.coo_matrix( (D,(R,C)), (dst.size,src.size)).tocsr()
# Parameters from http://www.aliensaint.com/uo/java/rd/
# -----------------------------------------------------
n = 256
dt = 1
t = 25000
# Du, Dv, F, k = 0.16, 0.08, 0.035, 0.065 # Bacteria 1
# Du, Dv, F, k = 0.14, 0.06, 0.035, 0.065 # Bacteria 2
# Du, Dv, F, k = 0.16, 0.08, 0.060, 0.062 # Coral
# Du, Dv, F, k = 0.19, 0.05, 0.060, 0.062 # Fingerprint
# Du, Dv, F, k = 0.10, 0.10, 0.018, 0.050 # Spirals
# Du, Dv, F, k = 0.12, 0.08, 0.020, 0.050 # Spirals Dense
# Du, Dv, F, k = 0.10, 0.16, 0.020, 0.050 # Spirals Fast
# Du, Dv, F, k = 0.16, 0.08, 0.020, 0.055 # Unstable
# Du, Dv, F, k = 0.16, 0.08, 0.050, 0.065 # Worms 1
# Du, Dv, F, k = 0.16, 0.08, 0.054, 0.063 # Worms 2
# Du, Dv, F, k = 0.16, 0.08, 0.035, 0.060 # Zebrafish
Du, Dv, F, k = 0.16, 0.08, 0.054, 0.063 # http://mrob.com/pub/comp/xmorphia/F540/F540-k630.html
Du, Dv, F, k = 0.16, 0.08, 0.038, 0.063 # http://mrob.com/pub/comp/xmorphia/F380/F380-k630.html
Du, Dv, F, k = 0.16, 0.08, 0.037, 0.063 #
Du, Dv, F, k = 0.16, 0.08, 0.046, 0.061 # http://mrob.com/pub/comp/xmorphia/F460/F460-k610.html
Du, Dv, F, k = 0.16, 0.08, 0.070, 0.061 # http://mrob.com/pub/comp/xmorphia/F700/F700-k610.html
Du, Dv, F, k = 0.16, 0.08, 0.066, 0.063 # http://mrob.com/pub/comp/xmorphia/F660/F660-k630.html
Du, Dv, F, k = 0.16, 0.08, 0.026, 0.061 # http://mrob.com/pub/comp/xmorphia/F260/F260-k610.html
Du, Dv, F, k = 0.16, 0.08, 0.086, 0.059 # http://mrob.com/pub/comp/xmorphia/F860/F860-k590.html
from optparse import OptionParser
defaults = dict(F=F, k=k, size=n, file='u.png')
parser = OptionParser()
parser.set_defaults(**defaults)
parser.add_option('-F', '--F', dest='F', type='float',
help='Parameter F, default %(F).3f.' % defaults)
parser.add_option('-k', '--k', dest='k', type='float',
help='Parameter k, default %(k).3f.' % defaults)
parser.add_option('--size', dest='size', type='int',
help='Image size, default %(size)d.' % defaults)
parser.add_option('--file', dest='file',
help='Output image file, default %(file)s.' % defaults)
options, args = parser.parse_args()
dim = (options.size, options.size)
u = np.zeros(dim, dtype = np.float32)
v = np.zeros(dim, dtype = np.float32)
U = np.zeros(dim, dtype = np.float32)
V = np.zeros(dim, dtype = np.float32)
Z = U*V*V
K = convolution_matrix(Z,Z, np.array([[np.NaN, 1., np.NaN],
[ 1., -4., 1. ],
[np.NaN, 1., np.NaN]]))
Lu = (K*U.ravel()).reshape(U.shape)
Lv = (K*V.ravel()).reshape(V.shape)
r = 20
u[...] = 1.0
v[...] = 0.0
for (x, y) in product(range(0, options.size, 64), repeat=2):
u[x:x+8,y:y+8] = 0.50
v[x:x+8,y:y+8] = 0.25
u += 0.05*np.random.random(dim)
v += 0.05*np.random.random(dim)
U[...] = u
V[...] = v
def on_idle(steps):
global u,v,U,V,Z,Du,Dv,options
for i in range(steps):
if (i % 100) == 0:
print >> stderr, (steps - i)/100,
Lu = (K*U.ravel()).reshape(U.shape)
Lv = (K*V.ravel()).reshape(V.shape)
u += dt * (Du*Lu - Z + options.F * (1-U))
v += dt * (Dv*Lv + Z - (options.F+options.k) * V)
#U,V = np.maximum(u,0), np.maximum(v,0)
U,V = u, v
Z = U*V*V
print >> stderr, ''
print u.max(), u.min()
on_idle(t)
print u.max(), u.min()
import Blit
Blit.utils.chan2img(u).save(options.file)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment