Created
August 26, 2019 15:03
-
-
Save mdouze/ffa01fe666a9325761266fe55ead72ad to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
(faiss_1.5.2) matthijs@devfair0144:~/faiss_versions/faiss_1Tcode/faiss/benchs/distributed_ondisk$ python distributed_kmeans.py --test 0 | |
Clustering 100000 points in 128D to 1000 clusters, redo 1 times, 20 iterations | |
Preprocessing in 0.03 s | |
Iteration 19 (0.85 s, search 0.73 s): objective=3.04666e+09 imbalance=250.288 nsplit=3 | |
(faiss_1.5.2) matthijs@devfair0144:~/faiss_versions/faiss_1Tcode/faiss/benchs/distributed_ondisk$ python distributed_kmeans.py --test 1 | |
Clustering 100000 points in 128D to 1000 clusters, 20 iterations seed 1234 | |
preproc... | |
done | |
Iteration 0 (0.11 s, search 0.10 s): objective=5.19019e+09 imbalance=250.883 nsplit=500 | |
Iteration 1 (0.16 s, search 0.15 s): objective=3.57228e+09 imbalance=250.478 nsplit=291 | |
Iteration 2 (0.21 s, search 0.19 s): objective=3.37028e+09 imbalance=250.383 nsplit=153 | |
Iteration 3 (0.25 s, search 0.23 s): objective=3.25659e+09 imbalance=250.334 nsplit=84 | |
Iteration 4 (0.31 s, search 0.29 s): objective=3.18893e+09 imbalance=250.313 nsplit=51 | |
Iteration 5 (0.36 s, search 0.33 s): objective=3.14598e+09 imbalance=250.300 nsplit=27 | |
Iteration 6 (0.40 s, search 0.37 s): objective=3.11773e+09 imbalance=250.293 nsplit=16 | |
Iteration 7 (0.44 s, search 0.42 s): objective=3.09851e+09 imbalance=250.290 nsplit=11 | |
Iteration 8 (0.49 s, search 0.46 s): objective=3.08491e+09 imbalance=250.287 nsplit=7 | |
Iteration 9 (0.54 s, search 0.51 s): objective=3.07535e+09 imbalance=250.285 nsplit=3 | |
Iteration 10 (0.58 s, search 0.55 s): objective=3.06785e+09 imbalance=250.284 nsplit=2 | |
Iteration 11 (0.62 s, search 0.59 s): objective=3.06222e+09 imbalance=250.284 nsplit=1 | |
Iteration 12 (0.67 s, search 0.64 s): objective=3.05779e+09 imbalance=250.283 nsplit=1 | |
Iteration 13 (0.71 s, search 0.68 s): objective=3.05444e+09 imbalance=250.283 nsplit=0 | |
Iteration 14 (0.76 s, search 0.72 s): objective=3.05168e+09 imbalance=250.283 nsplit=0 | |
Iteration 15 (0.80 s, search 0.77 s): objective=3.04984e+09 imbalance=250.282 nsplit=0 | |
Iteration 16 (0.85 s, search 0.81 s): objective=3.04834e+09 imbalance=250.282 nsplit=0 | |
Iteration 17 (0.89 s, search 0.85 s): objective=3.04722e+09 imbalance=250.282 nsplit=0 | |
Iteration 18 (0.94 s, search 0.90 s): objective=3.04616e+09 imbalance=250.282 nsplit=0 | |
Iteration 19 (0.98 s, search 0.94 s): objective=3.04522e+09 imbalance=250.282 nsplit=0 | |
(faiss_1.5.2) matthijs@devfair0144:~/faiss_versions/faiss_1Tcode/faiss/benchs/distributed_ondisk$ python distributed_kmeans.py --test 2 | |
Clustering 100000 points in 128D to 1000 clusters, 20 iterations seed 1234 | |
preproc... | |
done | |
Iteration 0 (0.13 s, search 0.12 s): objective=5.19019e+09 imbalance=250.883 nsplit=500 | |
Iteration 1 (0.19 s, search 0.18 s): objective=3.57228e+09 imbalance=250.478 nsplit=291 | |
Iteration 2 (0.24 s, search 0.23 s): objective=3.37028e+09 imbalance=250.383 nsplit=153 | |
Iteration 3 (0.29 s, search 0.27 s): objective=3.25659e+09 imbalance=250.334 nsplit=84 | |
Iteration 4 (0.34 s, search 0.31 s): objective=3.18893e+09 imbalance=250.313 nsplit=51 | |
Iteration 5 (0.38 s, search 0.36 s): objective=3.14598e+09 imbalance=250.300 nsplit=27 | |
Iteration 6 (0.43 s, search 0.41 s): objective=3.11773e+09 imbalance=250.293 nsplit=16 | |
Iteration 7 (0.48 s, search 0.45 s): objective=3.09851e+09 imbalance=250.290 nsplit=11 | |
Iteration 8 (0.53 s, search 0.50 s): objective=3.08491e+09 imbalance=250.287 nsplit=7 | |
Iteration 9 (0.58 s, search 0.55 s): objective=3.07535e+09 imbalance=250.285 nsplit=3 | |
Iteration 10 (0.62 s, search 0.59 s): objective=3.06785e+09 imbalance=250.284 nsplit=2 | |
Iteration 11 (0.67 s, search 0.64 s): objective=3.06222e+09 imbalance=250.284 nsplit=1 | |
Iteration 12 (0.72 s, search 0.68 s): objective=3.05779e+09 imbalance=250.283 nsplit=1 | |
Iteration 13 (0.76 s, search 0.73 s): objective=3.05444e+09 imbalance=250.283 nsplit=0 | |
Iteration 14 (0.81 s, search 0.77 s): objective=3.05168e+09 imbalance=250.283 nsplit=0 | |
Iteration 15 (0.85 s, search 0.82 s): objective=3.04984e+09 imbalance=250.282 nsplit=0 | |
Iteration 16 (0.90 s, search 0.87 s): objective=3.04834e+09 imbalance=250.282 nsplit=0 | |
Iteration 17 (0.95 s, search 0.91 s): objective=3.04722e+09 imbalance=250.282 nsplit=0 | |
Iteration 18 (1.00 s, search 0.96 s): objective=3.04616e+09 imbalance=250.282 nsplit=0 | |
Iteration 19 (1.08 s, search 1.04 s): objective=3.04522e+09 imbalance=250.282 nsplit=0 | |
(faiss_1.5.2) matthijs@devfair0144:~/faiss_versions/faiss_1Tcode/faiss/benchs/distributed_ondisk$ python distributed_kmeans.py --test 3 | |
using 2 GPUs | |
Clustering 100000 points in 128D to 1000 clusters, 20 iterations seed 1234 | |
preproc... | |
done | |
Iteration 0 (0.10 s, search 0.09 s): objective=5.19019e+09 imbalance=250.883 nsplit=500 | |
Iteration 1 (0.12 s, search 0.11 s): objective=3.57228e+09 imbalance=250.477 nsplit=290 | |
Iteration 2 (0.14 s, search 0.12 s): objective=3.37025e+09 imbalance=250.384 nsplit=155 | |
Iteration 3 (0.15 s, search 0.14 s): objective=3.25678e+09 imbalance=250.334 nsplit=85 | |
Iteration 4 (0.17 s, search 0.15 s): objective=3.18858e+09 imbalance=250.311 nsplit=52 | |
Iteration 5 (0.18 s, search 0.17 s): objective=3.14527e+09 imbalance=250.298 nsplit=28 | |
Iteration 6 (0.20 s, search 0.18 s): objective=3.11771e+09 imbalance=250.292 nsplit=16 | |
Iteration 7 (0.22 s, search 0.20 s): objective=3.0983e+09 imbalance=250.289 nsplit=11 | |
Iteration 8 (0.23 s, search 0.21 s): objective=3.08438e+09 imbalance=250.286 nsplit=7 | |
Iteration 9 (0.25 s, search 0.23 s): objective=3.07427e+09 imbalance=250.283 nsplit=3 | |
Iteration 10 (0.26 s, search 0.24 s): objective=3.06677e+09 imbalance=250.282 nsplit=0 | |
Iteration 11 (0.28 s, search 0.26 s): objective=3.06085e+09 imbalance=250.282 nsplit=0 | |
Iteration 12 (0.29 s, search 0.27 s): objective=3.05659e+09 imbalance=250.281 nsplit=0 | |
Iteration 13 (0.31 s, search 0.29 s): objective=3.05308e+09 imbalance=250.281 nsplit=0 | |
Iteration 14 (0.32 s, search 0.30 s): objective=3.05027e+09 imbalance=250.281 nsplit=0 | |
Iteration 15 (0.34 s, search 0.31 s): objective=3.04799e+09 imbalance=250.281 nsplit=0 | |
Iteration 16 (0.35 s, search 0.33 s): objective=3.04611e+09 imbalance=250.281 nsplit=0 | |
Iteration 17 (0.37 s, search 0.34 s): objective=3.04455e+09 imbalance=250.281 nsplit=0 | |
Iteration 18 (0.38 s, search 0.36 s): objective=3.04338e+09 imbalance=250.281 nsplit=0 | |
Iteration 19 (0.40 s, search 0.37 s): objective=3.04262e+09 imbalance=250.281 nsplit=0 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
hi, can you share the raw code of distributed_kmeans.py ? i am very interested in its implementation with faiss. thanks!