Created
April 10, 2020 18:32
-
-
Save mattcai/7d35eae3b369c637063ea1b2685d9eb0 to your computer and use it in GitHub Desktop.
starfish ilastik segmentation incompatible with cropped imagestacks
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# %matplotlib inline | |
import matplotlib | |
import matplotlib.pyplot as plt | |
import os | |
from starfish import Experiment, FieldOfView, ImageStack | |
from starfish.types import Axes, Levels | |
from starfish.image import Filter | |
from starfish.util.plot import imshow_plane | |
# load data | |
experiment = Experiment.from_json('https://d26bikfyahveg8.cloudfront.net/RNAScope/formatted/experiment.json') | |
dapi = experiment["fov_000"].get_image('nuclei') | |
cropped_dapi = dapi.sel({Axes.X: (195,2048), Axes.Y: (0,741)}) | |
# preprocess dapi images, may not be necessary | |
def preprocess(dapi): | |
blur = Filter.GaussianLowPass(sigma=5) | |
blurred = blur.run(dapi) | |
clip = Filter.Clip(p_min=1, p_max=95, level_method=Levels.SCALE_BY_CHUNK) | |
clipped = clip.run(blurred) | |
return clipped | |
dapi_p = preprocess(cropped_dapi) | |
# these paths need to be set for your environment and ilastik model has to be trained first | |
# ilastik_exe_path = '/Applications/ilastik-1.3.3post2-OSX.app/Contents/ilastik-release/run_ilastik.sh' | |
# ilastik_proj_path = os.path.join('/Users/mcai/RNAScope_Vignette', 'RNAScope_pixelclass.ilp') | |
# create filter and run | |
ipp = Filter.IlastikPretrainedProbability(ilastik_executable=ilastik_exe_path, ilastik_project=ilastik_proj_path) | |
probabilities = ipp.run(stack=dapi_p.sel({Axes.ROUND: 0})) | |
# or import .h5 probabilities file that was exported with default settings in ilastik pixel classification | |
# probabilities = ipp.import_ilastik_probabilities(path_to_h5_file="/Users/mcai/RNAScope_Vignette/preprocessed_dapi_Probabilities_float32.h5") | |
# View probability map next to dapi image | |
f, (ax1, ax2) = plt.subplots(ncols=2) | |
ax1.imshow(cropped_dapi.sel({Axes.ROUND: 0}).xarray.values.squeeze()) | |
ax1.set_title("Dapi") | |
ax2.imshow(probabilities.xarray.values.squeeze()) | |
ax2.set_title("Probabilities") | |
f.tight_layout() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment