Created
April 13, 2020 23:22
-
-
Save mattcai/42d6123d934f988be37c5cd2b08f5e80 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import os | |
from starfish import Experiment, FieldOfView, ImageStack, display | |
from starfish.core.spots.DecodeSpots.trace_builders import build_traces_sequential | |
from starfish.spots import AssignTargets, FindSpots, DecodeSpots | |
from starfish.image import ApplyTransform, LearnTransform, Filter | |
from starfish.types import Axes, Levels | |
from starfish.util.plot import diagnose_registration, imshow_plane, intensity_histogram, overlay_spot_calls | |
# load data | |
experiment = Experiment.from_json('https://d26bikfyahveg8.cloudfront.net/RNAScope/formatted/experiment.json') | |
imgs = experiment["fov_000"].get_image(FieldOfView.PRIMARY_IMAGES) | |
dapi = experiment["fov_000"].get_image('nuclei') | |
# register images | |
learn_translation = LearnTransform.Translation(reference_stack=dapi.sel({Axes.ROUND: 0}), axes=Axes.ROUND, upsampling=1000) | |
transforms_list = learn_translation.run(dapi) | |
registered_imgs = warp.run(imgs, transforms_list=transforms_list, in_place=False) | |
# white tophat filter | |
whitetophat = Filter.WhiteTophat(masking_radius=2, is_volume=False) | |
wth_imgs = whitetophat.run(registered_imgs, in_place=False) | |
# define blob detector for 2D images | |
bd = FindSpots.BlobDetector( | |
min_sigma=0.5, | |
max_sigma=2, | |
num_sigma=9, | |
threshold=0.2, | |
is_volume=False, | |
measurement_type='mean', | |
) | |
# run blob detector without reference_image | |
bd_spots = bd.run(image_stack=wth_imgs) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment