Skip to content

Instantly share code, notes, and snippets.

@kururu-abdo
Created July 27, 2023 16:44
Show Gist options
  • Save kururu-abdo/0c7fba7329dc01a413397ddbe7d4b4aa to your computer and use it in GitHub Desktop.
Save kururu-abdo/0c7fba7329dc01a413397ddbe7d4b4aa to your computer and use it in GitHub Desktop.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import folium
from js import fetch
import datetime as dt
import io
%matplotlib inline
#import data
URL = "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DV0101EN-SkillsNetwork/Data%20Files/Historical_Wildfires.csv"
resp = await fetch(URL)
text = io.BytesIO((await resp.arrayBuffer()).to_py())
df = pd.read_csv(text)
df['Year'] = pd.to_datetime(df['Date']).dt.year
df['Month'] = pd.to_datetime(df['Date']).dt.month
#normal plot
plt.figure(figsize=(12, 6))
df_new=df.groupby('Year')['Estimated_fire_area'].mean()
df_new.plot(x=df_new.index, y=df_new.values)
plt.xlabel('Year')
plt.ylabel('Average Estimated Fire Area (km²)')
plt.title('Estimated Fire Area over Time')
plt.show()
#after notice some patterns and trends you can zoom more in dataa
df_new=df.groupby(['Year','Month'])['Estimated_fire_area'].mean()
df_new.plot(x=df_new.index, y=df_new.values)
plt.xlabel('Year, Month')
plt.ylabel('Average Estimated Fire Area (km²)')
plt.title('Estimated Fire Area over Time')
plt.show()
#SEABON: bar plot
plt.figure(figsize=(10, 6))
sns.barplot(data=df, x='Region', y='Mean_estimated_fire_brightness')
plt.xlabel('Region')
plt.ylabel('Mean Estimated Fire Brightness (Kelvin)')
plt.title('Distribution of Mean Estimated Fire Brightness across Regions')
plt.show()
#SEABORN : pie plot
plt.figure(figsize=(10, 6))
region_counts = df.groupby('Region')['Count'].sum()
plt.pie(region_counts, labels=region_counts.index, autopct='%1.1f%%')
plt.title('Percentage of Pixels for Presumed Vegetation Fires by Region')
plt.axis('equal')
plt.show()
#add legend
#TODO
plt.figure(figsize=(10, 6))
region_counts = df.groupby('Region')['Count'].sum()
plt.pie(region_counts, labels=region_counts.index)
plt.title('Percentage of Pixels for Presumed Vegetation Fires by Region')
plt.legend([(i,round(k/region_counts.sum()*100,2)) for i,k in zip(region_counts.index, region_counts)])
plt.axis('equal')
plt.show()
#PLT hist
#TODO
plt.figure(figsize=(10, 6))
plt.hist(x=df['Mean_estimated_fire_brightness'], bins=5)
plt.xlabel('Mean Estimated Fire Brightness (Kelvin)')
plt.ylabel('Count')
plt.title('Histogram of Mean Estimated Fire Brightness')
plt.show()
#SEABOTN histplot
sns.histplot(data=df, x='Mean_estimated_fire_brightness', hue='Region')
plt.show()
sns.histplot(data=df, x='Mean_estimated_fire_brightness', hue='Region', multiple='stack')
plt.show()
#SEABORN scatter plot
plt.figure(figsize=(8, 6))
sns.scatterplot(data=df, x='Mean_confidence', y='Mean_estimated_fire_radiative_power')
plt.xlabel('Mean Estimated Fire Radiative Power (MW)')
plt.ylabel('Mean Confidence')
plt.title('Mean Estimated Fire Radiative Power vs. Mean Confidence')
plt.show()
#FOLIUM
region_data = {'region':['NSW','QL','SA','TA','VI','WA','NT'], 'Lat':[-31.8759835,-22.1646782,-30.5343665,-42.035067,-36.5986096,-25.2303005,-19.491411],
'Lon':[147.2869493,144.5844903,135.6301212,146.6366887,144.6780052,121.0187246,132.550964]}
reg=pd.DataFrame(region_data)
reg
aus_reg = folium.map.FeatureGroup()
# Create a Folium map centered on Australia
Aus_map = folium.Map(location=[-25, 135], zoom_start=4)
# loop through the region and add to feature group
for lat, lng, lab in zip(reg.Lat, reg.Lon, reg.region):
aus_reg.add_child(
folium.features.CircleMarker(
[lat, lng],
popup=lab,
radius=5, # define how big you want the circle markers to be
color='red',
fill=True,
fill_color='blue',
fill_opacity=0.6
)
)
# add incidents to map
Aus_map.add_child(aus_reg)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment