Created
May 6, 2016 08:49
-
-
Save kirel/0d7dcc6e2da354605162d62e6223ea65 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
import re | |
from ftplib import FTP | |
import zipfile | |
import StringIO | |
FTP_SERVER = 'ftp-cdc.dwd.de' | |
PATH_HISTORICAL = 'pub/CDC/observations_germany/climate/daily/kl/historical' | |
PATH_RECENT = 'pub/CDC/observations_germany/climate/daily/kl/recent' | |
RE_TEMPLATE_HISTORICAL = 'tageswerte_%s_.*_hist\\.zip$' | |
RE_TEMPLATE_RECENT = 'tageswerte_KL_%s_akt\\.zip$' | |
RE_TEMPLATE_CSV = 'produkt_klima_Tageswerte_.*_%s\\.txt' | |
def weather_for_stations(station_ids): | |
ftp = FTP(FTP_SERVER) | |
ftp.login() | |
historical_files = ftp.nlst(PATH_HISTORICAL) | |
recent_files = ftp.nlst(PATH_RECENT) | |
dfs = [] | |
for station_id in station_ids: | |
re_historical = re.compile(RE_TEMPLATE_HISTORICAL % str(station_id).zfill(5)) | |
re_recent = re.compile(RE_TEMPLATE_RECENT % str(station_id).zfill(5)) | |
re_csv = re.compile(RE_TEMPLATE_CSV % str(station_id).zfill(5)) | |
historical_files_to_download = [path for path in historical_files if re_historical.search(path)] | |
recent_files_to_download = [path for path in recent_files if re_recent.search(path)] | |
historical_zip_files = [StringIO.StringIO() for path in historical_files_to_download] | |
recent_zip_files = [StringIO.StringIO() for path in recent_files_to_download] | |
for (path, io) in zip(historical_files_to_download + recent_files_to_download, historical_zip_files + recent_zip_files): | |
ftp.retrbinary('RETR %s' % path, io.write) | |
historical_zips = [zipfile.ZipFile(io) for io in historical_zip_files] | |
recent_zips = [zipfile.ZipFile(io) for io in recent_zip_files] | |
historical_csvs = [StringIO.StringIO(zipf.read(next(name for name in zipf.namelist() if re_csv.match(name)))) for zipf in historical_zips] | |
recent_csvs = [StringIO.StringIO(zipf.read(next(name for name in zipf.namelist() if re_csv.match(name)))) for zipf in recent_zips] | |
data_frames = [pd.read_csv(csv, sep=';', skipfooter=1) for csv in historical_csvs + recent_csvs] | |
dfs = dfs + data_frames | |
df = pd.concat(dfs) | |
df.columns = df.columns.str.strip() | |
del df['eor'] | |
df = df.replace(-999, np.nan) | |
df['MESS_DATUM'] = pd.to_datetime(df['MESS_DATUM'], format='%Y%m%d') | |
df.index = df['MESS_DATUM'] | |
return df |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment