Skip to content

Instantly share code, notes, and snippets.

@kennwhite
Forked from alexcpn/bounding_box_simple.py
Created April 10, 2023 12:26
Show Gist options
  • Save kennwhite/b8a43c3b29601ad53693d71c2847c8d1 to your computer and use it in GitHub Desktop.
Save kennwhite/b8a43c3b29601ad53693d71c2847c8d1 to your computer and use it in GitHub Desktop.
from __future__ import division
import numpy as np
RADIUS_OF_EARTH_IN_KM = 6371.01
def haversine(lat1, lon1, lat2, lon2):
"""
Utility to calcutlate distance between two pointtodo explain regarding height
coverting from geodisc co-ordinate to cartestian gives errors when distances are further apart
"""
dLat = np.radians(lat2 - lat1)
dLon = np.radians(lon2 - lon1)
lat1 = np.radians(lat1)
lat2 = np.radians(lat2)
a = np.sin(dLat/2)**2 + np.cos(lat1)*np.cos(lat2)*np.sin(dLon/2)**2
c = 2*np.arcsin(np.sqrt(a))
return RADIUS_OF_EARTH_IN_KM * c
from __future__ import division
import numpy as np
def get_bounding_box(distance, latittude, longitude):
"""
Given a Geographic co-ordintate in degress, aim is to get a bounding box of a given point,
basically a maximum latitude, minmun latitude and max longitude and min longitude based on explanation
and formulae by these two sites
http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates
http://gis.stackexchange.com/questions/19221/find-tangent-point-on-circle-furthest-east-or-west
:param distance: bounding box distance in kilometer
:param latittude: of the point of the center of the box
:param longitude: of the point of the center of the box
:return: top left co-ordinates, and top-right co-ordinates of the bounding box
"""
# Convert to radians
latittude = np.radians(latittude)
longitude = np.radians(longitude)
if not MIN_LATITUDE <= latittude <= MAX_LATITUDE:
raise ValueError("Invalid latitude passed in")
if not MIN_LONGITUDE <= longitude <= MAX_LONGITUDE:
raise ValueError("Invalid longitude passed in")
distance_from_point_km = distance
angular_distance = distance_from_point_km / RADIUS_OF_EARTH_IN_KM
# Moving along a latitude north or south, keeping the longitude fixed, is travelling along
# a great circle; which means basically that doing so,the Radius from center of the earth ,
# to the circle traced by such a path is constant; So to derive the top latitude and bottom latitude
# without any error you just need to add or suntract the angular distance
lat_min = latittude - angular_distance
lat_max = latittude + angular_distance
# Handle poles here
if lat_min < MIN_LATITUDE or lat_max > MAX_LATITUDE:
lat_min = max(lat_min, MIN_LATITUDE)
lat_max = min(lat_max, MAX_LATITUDE)
lon_max = MAX_LONGITUDE
lon_min = MIN_LONGITUDE
lat_max = np.degrees(lat_max)
lat_min = np.degrees(lat_min)
lon_max = np.degrees(lon_max)
lon_min = np.degrees(lon_min)
return (lat_min, lon_min), (lat_max, lon_max), lat_max
# the latitude which intersects T1 and T2 in [1] and [2] is based on speherical trignomerty
# this is just calculated for verifying this method
latitude_of_intersection = np.arcsin(np.sin(latittude) / np.cos(angular_distance))
latitude_of_intersection = np.degrees(latitude_of_intersection)
# if we draw a circle with distance around the lat and longitude, then the point where the
# logitude touches the circle will be at a latitude a bit apart from the original latitiude as the
# circle is on the sphere , the earths sphere
delta_longitude = np.arcsin(np.sin(angular_distance) / np.cos(latittude))
lon_min = longitude - delta_longitude
lon_max = longitude + delta_longitude
lon_min = np.degrees(lon_min)
lat_max = np.degrees(lat_max)
lon_max = np.degrees(lon_max)
lat_min = np.degrees(lat_min)
return (lat_min, lon_min), (lat_max, lon_max), latitude_of_intersection
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment