Last active
January 25, 2022 17:27
-
-
Save kachayev/a50e19de0b1a89eb2d63efc704655a43 to your computer and use it in GitHub Desktop.
Converting RL loop (PPO, DQN, etc) into a selfplay setting by changing 2 lines
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Imagine we have a training loop for an agent. E.g. PPO, or DQN, or whatever. | |
What is the easiest way to convert this into a selfplay? | |
To make this happen we want to run 2 identical loop: 1 loop for each agent. | |
But. There are 2 sync points: `env.reset()`, and each `env.step()`. | |
Is there a way to avoid duplicating code for setting/loading agent model, creating/updating | |
buffers, running training loops etc... Yes, it is. By utilizing generators protocol: `yield` and `send`. | |
The idea is simple: turn loop into a generator by `yield`-ing on `reset` and on each `step`, feed back | |
the result of interacting with the environment using `.send`. This makes it possible for us to have a single | |
env, and orchestrate 2 loops independently. Easier to show than to explain. See "__main__" with the | |
implementation. | |
Code for PPO is taken from CleanRL: https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo.py | |
SlimeVolley Gym environment: https://github.com/hardmaru/slimevolleygym | |
""" | |
import argparse | |
import os | |
import random | |
import time | |
from tqdm import tqdm | |
from distutils.util import strtobool | |
import gym | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
from torch.distributions.categorical import Categorical | |
from torch.distributions.bernoulli import Bernoulli | |
from torch.utils.tensorboard import SummaryWriter | |
import slimevolleygym | |
def parse_args(): | |
# fmt: off | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"), | |
help="the name of this experiment") | |
parser.add_argument("--gym-id", type=str, default="CartPole-v1", | |
help="the id of the gym environment") | |
parser.add_argument("--learning-rate", type=float, default=2.5e-4, | |
help="the learning rate of the optimizer") | |
parser.add_argument("--seed", type=int, default=1, | |
help="seed of the experiment") | |
parser.add_argument("--total-timesteps", type=int, default=25000, | |
help="total timesteps of the experiments") | |
parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, | |
help="if toggled, `torch.backends.cudnn.deterministic=False`") | |
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, | |
help="if toggled, cuda will be enabled by default") | |
parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, | |
help="if toggled, this experiment will be tracked with Weights and Biases") | |
parser.add_argument("--wandb-project-name", type=str, default="cleanRL", | |
help="the wandb's project name") | |
parser.add_argument("--wandb-entity", type=str, default=None, | |
help="the entity (team) of wandb's project") | |
parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, | |
help="weather to capture videos of the agent performances (check out `videos` folder)") | |
# Algorithm specific arguments | |
parser.add_argument("--num-envs", type=int, default=4, | |
help="the number of parallel game environments") | |
parser.add_argument("--num-steps", type=int, default=128, | |
help="the number of steps to run in each environment per policy rollout") | |
parser.add_argument("--anneal-lr", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, | |
help="Toggle learning rate annealing for policy and value networks") | |
parser.add_argument("--gae", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, | |
help="Use GAE for advantage computation") | |
parser.add_argument("--gamma", type=float, default=0.99, | |
help="the discount factor gamma") | |
parser.add_argument("--gae-lambda", type=float, default=0.95, | |
help="the lambda for the general advantage estimation") | |
parser.add_argument("--num-minibatches", type=int, default=4, | |
help="the number of mini-batches") | |
parser.add_argument("--update-epochs", type=int, default=4, | |
help="the K epochs to update the policy") | |
parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, | |
help="Toggles advantages normalization") | |
parser.add_argument("--clip-coef", type=float, default=0.2, | |
help="the surrogate clipping coefficient") | |
parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, | |
help="Toggles wheter or not to use a clipped loss for the value function, as per the paper.") | |
parser.add_argument("--ent-coef", type=float, default=0.01, | |
help="coefficient of the entropy") | |
parser.add_argument("--vf-coef", type=float, default=0.5, | |
help="coefficient of the value function") | |
parser.add_argument("--max-grad-norm", type=float, default=0.5, | |
help="the maximum norm for the gradient clipping") | |
parser.add_argument("--target-kl", type=float, default=None, | |
help="the target KL divergence threshold") | |
args = parser.parse_args() | |
args.batch_size = int(args.num_envs * args.num_steps) | |
args.minibatch_size = int(args.batch_size // args.num_minibatches) | |
# fmt: on | |
return args | |
def layer_init(layer, std=np.sqrt(2), bias_const=0.0): | |
torch.nn.init.orthogonal_(layer.weight, std) | |
torch.nn.init.constant_(layer.bias, bias_const) | |
return layer | |
class Agent(nn.Module): | |
def __init__(self, envs): | |
super(Agent, self).__init__() | |
self.critic = nn.Sequential( | |
layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64)), | |
nn.Tanh(), | |
layer_init(nn.Linear(64, 64)), | |
nn.Tanh(), | |
layer_init(nn.Linear(64, 1), std=1.0), | |
) | |
self.actor = nn.Sequential( | |
layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64)), | |
nn.Tanh(), | |
layer_init(nn.Linear(64, 64)), | |
nn.Tanh(), | |
layer_init(nn.Linear(64, envs.single_action_space.n), std=0.01), | |
) | |
def get_value(self, x): | |
return self.critic(x) | |
def get_action_and_value(self, x, action=None): | |
logits = self.actor(x) | |
# probs = Categorical(logits=logits) | |
probs = Bernoulli(logits=logits) | |
if action is None: | |
action = probs.sample() | |
return action, probs.log_prob(action.float()).sum(dim=1), probs.entropy().sum(dim=1), self.critic(x) | |
def train_loop(args, envs, run_name, agent_id): | |
run_name = f"{run_name}__{agent_id}" | |
if args.track: | |
import wandb | |
wandb.init( | |
project=args.wandb_project_name, | |
entity=args.wandb_entity, | |
sync_tensorboard=True, | |
config=vars(args), | |
name=run_name, | |
monitor_gym=True, | |
save_code=True, | |
) | |
writer = SummaryWriter(f"runs/{run_name}") | |
writer.add_text( | |
"hyperparameters", | |
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])), | |
) | |
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu") | |
# EDITED HERE | |
# assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported" | |
agent = Agent(envs).to(device) | |
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5) | |
# ALGO Logic: Storage setup | |
obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape).to(device) | |
actions = torch.zeros((args.num_steps, args.num_envs) + envs.single_action_space.shape).to(device) | |
logprobs = torch.zeros((args.num_steps, args.num_envs)).to(device) | |
rewards = torch.zeros((args.num_steps, args.num_envs)).to(device) | |
dones = torch.zeros((args.num_steps, args.num_envs)).to(device) | |
values = torch.zeros((args.num_steps, args.num_envs)).to(device) | |
# TRY NOT TO MODIFY: start the game | |
global_step = 0 | |
# EDITED HERE | |
# xxx(okachaiev): ideally i need 2 pbars for running env and for epoches | |
pbar = tqdm(total=args.total_timesteps) | |
pbar.set_description("Episodic return: n/a") | |
start_time = time.time() | |
# EDITED HERE | |
reset_obs = yield | |
next_obs = torch.Tensor(reset_obs).to(device) | |
next_done = torch.zeros(args.num_envs).to(device) | |
num_updates = args.total_timesteps // args.batch_size | |
for update in range(1, num_updates + 1): | |
# Annealing the rate if instructed to do so. | |
if args.anneal_lr: | |
frac = 1.0 - (update - 1.0) / num_updates | |
lrnow = frac * args.learning_rate | |
optimizer.param_groups[0]["lr"] = lrnow | |
for step in range(0, args.num_steps): | |
global_step += 1 * args.num_envs | |
obs[step] = next_obs | |
dones[step] = next_done | |
# ALGO LOGIC: action logic | |
with torch.no_grad(): | |
action, logprob, _, value = agent.get_action_and_value(next_obs) | |
values[step] = value.flatten() | |
actions[step] = action | |
logprobs[step] = logprob | |
# TRY NOT TO MODIFY: execute the game and log data. | |
# EDITED HERE | |
next_obs, reward, done, info = yield action.cpu().numpy() | |
rewards[step] = torch.tensor(reward).to(device).view(-1) | |
next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to(device) | |
for item in info: | |
if "episode" in item.keys(): | |
# EDITED HERE | |
pbar.set_description(f"Episodic return: {item['episode']['r']}") | |
writer.add_scalar("charts/episodic_return", item["episode"]["r"], global_step) | |
writer.add_scalar("charts/episodic_length", item["episode"]["l"], global_step) | |
break | |
pbar.update(args.num_envs) | |
# bootstrap value if not done | |
with torch.no_grad(): | |
next_value = agent.get_value(next_obs).reshape(1, -1) | |
if args.gae: | |
advantages = torch.zeros_like(rewards).to(device) | |
lastgaelam = 0 | |
for t in reversed(range(args.num_steps)): | |
if t == args.num_steps - 1: | |
nextnonterminal = 1.0 - next_done | |
nextvalues = next_value | |
else: | |
nextnonterminal = 1.0 - dones[t + 1] | |
nextvalues = values[t + 1] | |
delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t] | |
advantages[t] = lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam | |
returns = advantages + values | |
else: | |
returns = torch.zeros_like(rewards).to(device) | |
for t in reversed(range(args.num_steps)): | |
if t == args.num_steps - 1: | |
nextnonterminal = 1.0 - next_done | |
next_return = next_value | |
else: | |
nextnonterminal = 1.0 - dones[t + 1] | |
next_return = returns[t + 1] | |
returns[t] = rewards[t] + args.gamma * nextnonterminal * next_return | |
advantages = returns - values | |
# flatten the batch | |
b_obs = obs.reshape((-1,) + envs.single_observation_space.shape) | |
b_logprobs = logprobs.reshape(-1) | |
b_actions = actions.reshape((-1,) + envs.single_action_space.shape) | |
b_advantages = advantages.reshape(-1) | |
b_returns = returns.reshape(-1) | |
b_values = values.reshape(-1) | |
# Optimizaing the policy and value network | |
b_inds = np.arange(args.batch_size) | |
clipfracs = [] | |
for epoch in range(args.update_epochs): | |
np.random.shuffle(b_inds) | |
for start in range(0, args.batch_size, args.minibatch_size): | |
end = start + args.minibatch_size | |
mb_inds = b_inds[start:end] | |
_, newlogprob, entropy, newvalue = agent.get_action_and_value(b_obs[mb_inds], b_actions.long()[mb_inds]) | |
logratio = newlogprob - b_logprobs[mb_inds] | |
ratio = logratio.exp() | |
with torch.no_grad(): | |
# calculate approx_kl http://joschu.net/blog/kl-approx.html | |
# old_approx_kl = (-logratio).mean() | |
approx_kl = ((ratio - 1) - logratio).mean() | |
clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()] | |
mb_advantages = b_advantages[mb_inds] | |
if args.norm_adv: | |
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8) | |
# Policy loss | |
pg_loss1 = -mb_advantages * ratio | |
pg_loss2 = -mb_advantages * torch.clamp(ratio, 1 - args.clip_coef, 1 + args.clip_coef) | |
pg_loss = torch.max(pg_loss1, pg_loss2).mean() | |
# Value loss | |
newvalue = newvalue.view(-1) | |
if args.clip_vloss: | |
v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2 | |
v_clipped = b_values[mb_inds] + torch.clamp( | |
newvalue - b_values[mb_inds], | |
-args.clip_coef, | |
args.clip_coef, | |
) | |
v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2 | |
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped) | |
v_loss = 0.5 * v_loss_max.mean() | |
else: | |
v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean() | |
entropy_loss = entropy.mean() | |
loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef | |
optimizer.zero_grad() | |
loss.backward() | |
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm) | |
optimizer.step() | |
if args.target_kl is not None: | |
if approx_kl > args.target_kl: | |
break | |
y_pred, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy() | |
var_y = np.var(y_true) | |
explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y | |
# TRY NOT TO MODIFY: record rewards for plotting purposes | |
writer.add_scalar("charts/learning_rate", optimizer.param_groups[0]["lr"], global_step) | |
writer.add_scalar("losses/value_loss", v_loss.item(), global_step) | |
writer.add_scalar("losses/policy_loss", pg_loss.item(), global_step) | |
writer.add_scalar("losses/entropy", entropy_loss.item(), global_step) | |
writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step) | |
writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step) | |
writer.add_scalar("losses/explained_variance", explained_var, global_step) | |
# EDITED HERE | |
# print("SPS:", int(global_step / (time.time() - start_time))) | |
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step) | |
torch.save(agent.state_dict(), f"trained_agents/{run_name}.pt") | |
pbar.close() | |
writer.close() | |
# EDITED HERE: make SlimeVolley a little bit more friendly to Wrappers | |
class SelfPlayWrapper(gym.Wrapper): | |
def step(self, action): | |
action1, action2 = action | |
obs, reward, done, info = self.env.step(action1, action2) | |
return (obs, info['otherObs']), reward, done, info | |
def make_env(gym_id, seed, run_name): | |
env = gym.make(gym_id) | |
env.single_observation_space = env.observation_space | |
env.single_action_space = env.action_space | |
# EDITED HERE: need to wrap, otherwise the rest of the wrapper | |
# won't work (step only accepts a single argument) | |
env = SelfPlayWrapper(env) | |
env = gym.wrappers.RecordEpisodeStatistics(env) | |
env.seed(seed) | |
env.action_space.seed(seed) | |
env.observation_space.seed(seed) | |
return env | |
if __name__ == "__main__": | |
args = parse_args() | |
run_name = f"{args.gym_id}__{args.exp_name}__{args.seed}__{int(time.time())}" | |
# TRY NOT TO MODIFY: seeding | |
random.seed(args.seed) | |
np.random.seed(args.seed) | |
torch.manual_seed(args.seed) | |
torch.backends.cudnn.deterministic = args.torch_deterministic | |
# env setup | |
# EDITED HERE, SlimeVolley is hard with VecEnv :( | |
envs = make_env(args.gym_id, args.seed, run_name) | |
# RUNNING 1-vs-1 BASED ON NORMAL PPO LOOP | |
# make loops (generators) | |
loop_agent1 = train_loop(args, envs, run_name, "1") | |
loop_agent2 = train_loop(args, envs, run_name, "2") | |
# first yield | |
next(loop_agent1), next(loop_agent2) | |
next_obs = envs.reset() | |
next_obs = np.expand_dims(next_obs, 0) | |
action1 = loop_agent1.send(next_obs) | |
action2 = loop_agent2.send(next_obs) | |
# each following yield | |
while True: | |
(next_obs1, next_obs2), reward, done, info = envs.step((action1.squeeze(0), action2.squeeze(0))) | |
try: | |
action1 = loop_agent1.send((np.expand_dims(next_obs1,0), np.expand_dims(reward,0), np.array([done]), [info])) | |
action2 = loop_agent2.send((np.expand_dims(next_obs2,0), np.expand_dims(-reward,0), np.array([done]), [info])) | |
except StopIteration: | |
break | |
envs.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment