-
-
Save jkreps/c7ddb4041ef62a900e6c to your computer and use it in GitHub Desktop.
Producer | |
Setup | |
bin/kafka-topics.sh --zookeeper esv4-hcl197.grid.linkedin.com:2181 --create --topic test-rep-one --partitions 6 --replication-factor 1 | |
bin/kafka-topics.sh --zookeeper esv4-hcl197.grid.linkedin.com:2181 --create --topic test --partitions 6 --replication-factor 3 | |
Single thread, no replication | |
bin/kafka-run-class.sh org.apache.kafka.clients.tools.ProducerPerformance test7 50000000 100 -1 acks=1 bootstrap.servers=esv4-hcl198.grid.linkedin.com:9092 buffer.memory=67108864 batch.size=8196 | |
Single-thread, async 3x replication | |
bin/kafktopics.sh --zookeeper esv4-hcl197.grid.linkedin.com:2181 --create --topic test --partitions 6 --replication-factor 3 | |
bin/kafka-run-class.sh org.apache.kafka.clients.tools.ProducerPerformance test6 50000000 100 -1 acks=1 bootstrap.servers=esv4-hcl198.grid.linkedin.com:9092 buffer.memory=67108864 batch.size=8196 | |
Single-thread, sync 3x replication | |
bin/kafka-run-class.sh org.apache.kafka.clients.tools.ProducerPerformance test 50000000 100 -1 acks=-1 bootstrap.servers=esv4-hcl198.grid.linkedin.com:9092 buffer.memory=67108864 batch.size=64000 | |
Three Producers, 3x async replication | |
bin/kafka-run-class.sh org.apache.kafka.clients.tools.ProducerPerformance test 50000000 100 -1 acks=1 bootstrap.servers=esv4-hcl198.grid.linkedin.com:9092 buffer.memory=67108864 batch.size=8196 | |
Throughput Versus Stored Data | |
bin/kafka-run-class.sh org.apache.kafka.clients.tools.ProducerPerformance test 50000000000 100 -1 acks=1 bootstrap.servers=esv4-hcl198.grid.linkedin.com:9092 buffer.memory=67108864 batch.size=8196 | |
Effect of message size | |
for i in 10 100 1000 10000 100000; | |
do | |
echo "" | |
echo $i | |
bin/kafka-run-class.sh org.apache.kafka.clients.tools.ProducerPerformance test $((1000*1024*1024/$i)) $i -1 acks=1 bootstrap.servers=esv4-hcl198.grid.linkedin.com:9092 buffer.memory=67108864 batch.size=128000 | |
done; | |
Consumer | |
Consumer throughput | |
bin/kafka-consumer-perf-test.sh --zookeeper esv4-hcl197.grid.linkedin.com:2181 --messages 50000000 --topic test --threads 1 | |
3 Consumers | |
On three servers, run: | |
bin/kafka-consumer-perf-test.sh --zookeeper esv4-hcl197.grid.linkedin.com:2181 --messages 50000000 --topic test --threads 1 | |
End-to-end Latency | |
bin/kafka-run-class.sh kafka.tools.TestEndToEndLatency esv4-hcl198.grid.linkedin.com:9092 esv4-hcl197.grid.linkedin.com:2181 test 5000 | |
Producer and consumer | |
bin/kafka-run-class.sh org.apache.kafka.clients.tools.ProducerPerformance test 50000000 100 -1 acks=1 bootstrap.servers=esv4-hcl198.grid.linkedin.com:9092 buffer.memory=67108864 batch.size=8196 | |
bin/kafka-consumer-perf-test.sh --zookeeper esv4-hcl197.grid.linkedin.com:2181 --messages 50000000 --topic test --threads 1 | |
# Licensed to the Apache Software Foundation (ASF) under one or more | |
# contributor license agreements. See the NOTICE file distributed with | |
# this work for additional information regarding copyright ownership. | |
# The ASF licenses this file to You under the Apache License, Version 2.0 | |
# (the "License"); you may not use this file except in compliance with | |
# the License. You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# see kafka.server.KafkaConfig for additional details and defaults | |
############################# Server Basics ############################# | |
# The id of the broker. This must be set to a unique integer for each broker. | |
broker.id=0 | |
############################# Socket Server Settings ############################# | |
# The port the socket server listens on | |
port=9092 | |
# Hostname the broker will bind to and advertise to producers and consumers. | |
# If not set, the server will bind to all interfaces and advertise the value returned from | |
# from java.net.InetAddress.getCanonicalHostName(). | |
#host.name=localhost | |
# The number of threads handling network requests | |
num.network.threads=4 | |
# The number of threads doing disk I/O | |
num.io.threads=8 | |
# The send buffer (SO_SNDBUF) used by the socket server | |
socket.send.buffer.bytes=1048576 | |
# The receive buffer (SO_RCVBUF) used by the socket server | |
socket.receive.buffer.bytes=1048576 | |
# The maximum size of a request that the socket server will accept (protection against OOM) | |
socket.request.max.bytes=104857600 | |
############################# Log Basics ############################# | |
# The directory under which to store log files | |
log.dirs=/grid/a/dfs-data/kafka-logs,/grid/b/dfs-data/kafka-logs,/grid/c/dfs-data/kafka-logs,/grid/d/dfs-data/kafka-logs,/grid/e/dfs-data/kafka-logs,/grid/f/dfs-data/kafka-logs | |
# The number of logical partitions per topic per server. More partitions allow greater parallelism | |
# for consumption, but also mean more files. | |
num.partitions=8 | |
############################# Log Flush Policy ############################# | |
# The following configurations control the flush of data to disk. This is the most | |
# important performance knob in kafka. | |
# There are a few important trade-offs here: | |
# 1. Durability: Unflushed data is at greater risk of loss in the event of a crash. | |
# 2. Latency: Data is not made available to consumers until it is flushed (which adds latency). | |
# 3. Throughput: The flush is generally the most expensive operation. | |
# The settings below allow one to configure the flush policy to flush data after a period of time or | |
# every N messages (or both). This can be done globally and overridden on a per-topic basis. | |
# Per-topic overrides for log.flush.interval.ms | |
#log.flush.intervals.ms.per.topic=topic1:1000, topic2:3000 | |
############################# Log Retention Policy ############################# | |
# The following configurations control the disposal of log segments. The policy can | |
# be set to delete segments after a period of time, or after a given size has accumulated. | |
# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens | |
# from the end of the log. | |
# The minimum age of a log file to be eligible for deletion | |
log.retention.hours=168 | |
# A size-based retention policy for logs. Segments are pruned from the log as long as the remaining | |
# segments don't drop below log.retention.bytes. | |
#log.retention.bytes=1073741824 | |
# The maximum size of a log segment file. When this size is reached a new log segment will be created. | |
log.segment.bytes=536870912 | |
# The interval at which log segments are checked to see if they can be deleted according | |
# to the retention policies | |
log.cleanup.interval.mins=1 | |
############################# Zookeeper ############################# | |
# Zookeeper connection string (see zookeeper docs for details). | |
# This is a comma separated host:port pairs, each corresponding to a zk | |
# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002". | |
# You can also append an optional chroot string to the urls to specify the | |
# root directory for all kafka znodes. | |
zookeeper.connect=esv4-hcl197.grid.linkedin.com:2181 | |
# Timeout in ms for connecting to zookeeper | |
zookeeper.connection.timeout.ms=1000000 | |
# metrics reporter properties | |
kafka.metrics.polling.interval.secs=5 | |
kafka.metrics.reporters=kafka.metrics.KafkaCSVMetricsReporter | |
kafka.csv.metrics.dir=/tmp/kafka_metrics | |
# Disable csv reporting by default. | |
kafka.csv.metrics.reporter.enabled=false | |
replica.lag.max.messages=10000000 |
arlixu
commented
Oct 22, 2019
For recent version(test with 2.3.0):
- clone kafka source code, then run
./gradlew jarAll -x signArchives -x test -x javadoc -x scaladoc
- run test
bin/kafka-run-class.sh org.apache.kafka.tools.ProducerPerformance --topic test-rep-one --num-records 50000000 --record-size 100 --throughput=-1 --producer.config ./test.conf
test.conf:
[root@dx-app2 kafka]# cat test.conf
# list of brokers used for bootstrapping knowledge about the rest of the cluster
# format: host1:port1,host2:port2 ...
bootstrap.servers=localhost:9092
# the default batch size in bytes when batching multiple records sent to a partition
batch.size=8196
# the total bytes of memory the producer can use to buffer records waiting to be sent to the server
buffer.memory=67108864
@daixiang0
Hi, I can't understand the first step. What do you mean by saying "clone kafka source code"?
I think the answer is simple, for example, run 'git clone ...location' command where ...location is Kafka source on github.
Is this test setup running zookeeper on 3 nodes or just 1? It's not clear from this file.
I believe the zookeeper switch on 'kafka-consumer-perf-test' has deprecated for 'kafka-consumer-perf-test.bat' . (I am running remotely from kafka path CLI)
Running the below from CLI I am getting the error.
kafka-consumer-perf-test --topic test --bootstrap-server test:XXXX --messages 10 --threads 1 --consumer.config C:*****\consumer.properties --group test --timeout 100000 --print-metrics
Exception in thread "main" java.util.IllegalFormatConversionException: f != java.lang.Integer
at java.util.Formatter$FormatSpecifier.failConversion(Formatter.java:4302)
at java.util.Formatter$FormatSpecifier.printFloat(Formatter.java:2806)
at java.util.Formatter$FormatSpecifier.print(Formatter.java:2753)
at java.util.Formatter.format(Formatter.java:2520)
at java.util.Formatter.format(Formatter.java:2455)
at java.lang.String.format(String.java:2940)
at scala.collection.immutable.StringLike.format(StringLike.scala:354)
at scala.collection.immutable.StringLike.format$(StringLike.scala:353)
at scala.collection.immutable.StringOps.format(StringOps.scala:33)
at kafka.utils.ToolsUtils$.$anonfun$printMetrics$3(ToolsUtils.scala:60)
at kafka.utils.ToolsUtils$.$anonfun$printMetrics$3$adapted(ToolsUtils.scala:58)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at kafka.utils.ToolsUtils$.printMetrics(ToolsUtils.scala:58)
at kafka.tools.ConsumerPerformance$.main(ConsumerPerformance.scala:82)
at kafka.tools.ConsumerPerformance.main(ConsumerPerformance.scala)
@daixiang0
Hi, I can't understand the first step. What do you mean by saying "clone kafka source code"?
I think to clone source code is to build Kafka from source. If you've already installed, just go run the shell script. :)
Hello
Single-thread, sync 3x replication
bin/kafka-run-class.sh org.apache.kafka.clients.tools.ProducerPerformance test 50000000 100 -1 acks=-1 bootstrap.servers=esv4-hcl198.grid.linkedin.com:9092 buffer.memory=67108864 batch.size=64000
Three Producers, 3x async replication
bin/kafka-run-class.sh org.apache.kafka.clients.tools.ProducerPerformance test 50000000 100 -1 acks=1 bootstrap.servers=esv4-hcl198.grid.linkedin.com:9092 buffer.memory=67108864 batch.size=8196
Sorry but what is the difference between sync and async replication ? i was thinking synch mode mode corresponds to acks=1 and async correspond to acks=all but the command lines let me think something different ?
Thanks