Skip to content

Instantly share code, notes, and snippets.

@jimmie33
Last active June 23, 2022 01:57
Show Gist options
  • Save jimmie33/27c1c0a7736ba66c2395 to your computer and use it in GitHub Desktop.
Save jimmie33/27c1c0a7736ba66c2395 to your computer and use it in GitHub Desktop.
VGG16 finetuned on the Salient Object Subitizing (SOS) dataset, which is described in the CVPR'15 paper: "Salient Object Subitizing"

##Information

name: VGG16 finetuned on the Salient Object Subitizing (SOS) dataset, which is described in the CVPR'15 paper: "Salient Object Subitizing"

caffemodel: VGG16_SalObjSub.caffemodel

caffemodel_url: http://www.cs.bu.edu/groups/ivc/data/SOS/VGG16_SalObjSub.caffemodel

license: http://creativecommons.org/licenses/by-nc/4.0/ (non-commercial use only)

caffe_version: trained using a custom Caffe-based framework (see https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-readme-md)

gist_id: 27c1c0a7736ba66c2395

Description

The model predicts the existence and the number (0, 1, 2, 3 and 4+) of salient objects in an image:

Salient Object Subitizing
J. Zhang, S. Ma, M. Sameki, S. Sclaroff, M. Betke, Z. Lin, X. Shen, B. Price and R. Mech. 
CVPR, 2015.

Please cite the paper if you use the model. See our project page for more details:

http://www.cs.bu.edu/groups/ivc/Subitizing/

The input images should be zero-centered by mean pixel (rather than mean image) subtraction. Namely, the following BGR values should be subtracted: [103.939, 116.779, 123.68].

Caffe compatibility

see https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-readme-md

How to use the model

The model outputs a 5D probability vector for a test image. The each value in the 5D vector corresponds to the likelihood that this image contains 0, 1, 2, 3 and 4+ salient objects. In our experiments, test images are resized to 224X224, regardless of the original aspect ratios.

For example applications in salient object detection and object proposal generation, please see the paper.

name: "VGG_ILSVRC_16_layers"
input: "data"
input_dim: 10
input_dim: 3
input_dim: 224
input_dim: 224
layers {
bottom: "data"
top: "conv1_1"
name: "conv1_1"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: CONVOLUTION
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv1_1"
top: "conv1_1"
name: "relu1_1"
type: RELU
}
layers {
bottom: "conv1_1"
top: "conv1_2"
name: "conv1_2"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: CONVOLUTION
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv1_2"
top: "conv1_2"
name: "relu1_2"
type: RELU
}
layers {
bottom: "conv1_2"
top: "pool1"
name: "pool1"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool1"
top: "conv2_1"
name: "conv2_1"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: CONVOLUTION
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv2_1"
top: "conv2_1"
name: "relu2_1"
type: RELU
}
layers {
bottom: "conv2_1"
top: "conv2_2"
name: "conv2_2"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: CONVOLUTION
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv2_2"
top: "conv2_2"
name: "relu2_2"
type: RELU
}
layers {
bottom: "conv2_2"
top: "pool2"
name: "pool2"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool2"
top: "conv3_1"
name: "conv3_1"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: CONVOLUTION
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv3_1"
top: "conv3_1"
name: "relu3_1"
type: RELU
}
layers {
bottom: "conv3_1"
top: "conv3_2"
name: "conv3_2"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: CONVOLUTION
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv3_2"
top: "conv3_2"
name: "relu3_2"
type: RELU
}
layers {
bottom: "conv3_2"
top: "conv3_3"
name: "conv3_3"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: CONVOLUTION
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv3_3"
top: "conv3_3"
name: "relu3_3"
type: RELU
}
layers {
bottom: "conv3_3"
top: "pool3"
name: "pool3"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool3"
top: "conv4_1"
name: "conv4_1"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv4_1"
top: "conv4_1"
name: "relu4_1"
type: RELU
}
layers {
bottom: "conv4_1"
top: "conv4_2"
name: "conv4_2"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv4_2"
top: "conv4_2"
name: "relu4_2"
type: RELU
}
layers {
bottom: "conv4_2"
top: "conv4_3"
name: "conv4_3"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv4_3"
top: "conv4_3"
name: "relu4_3"
type: RELU
}
layers {
bottom: "conv4_3"
top: "pool4"
name: "pool4"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool4"
top: "conv5_1"
name: "conv5_1"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv5_1"
top: "conv5_1"
name: "relu5_1"
type: RELU
}
layers {
bottom: "conv5_1"
top: "conv5_2"
name: "conv5_2"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv5_2"
top: "conv5_2"
name: "relu5_2"
type: RELU
}
layers {
bottom: "conv5_2"
top: "conv5_3"
name: "conv5_3"
type: CONVOLUTION
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv5_3"
top: "conv5_3"
name: "relu5_3"
type: RELU
}
layers {
bottom: "conv5_3"
top: "pool5"
name: "pool5"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool5"
top: "fc6"
name: "fc6"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: INNER_PRODUCT
inner_product_param {
num_output: 4096
}
}
layers {
bottom: "fc6"
top: "fc6"
name: "relu6"
type: RELU
}
layers {
bottom: "fc6"
top: "fc6"
name: "drop6"
type: DROPOUT
dropout_param {
dropout_ratio: 0.5
}
}
layers {
bottom: "fc6"
top: "fc7"
name: "fc7"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: INNER_PRODUCT
inner_product_param {
num_output: 4096
}
}
layers {
bottom: "fc7"
top: "fc7"
name: "relu7"
type: RELU
}
layers {
bottom: "fc7"
top: "fc7"
name: "drop7"
type: DROPOUT
dropout_param {
dropout_ratio: 0.5
}
}
layers {
bottom: "fc7"
top: "fc8"
name: "fc8-5"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: INNER_PRODUCT
inner_product_param {
num_output: 5
}
}
layers {
bottom: "fc8"
top: "prob"
name: "prob"
type: SOFTMAX
}
net: "train_val.prototxt"
test_iter: 120
test_interval: 2000
base_lr: 0.0001
lr_policy: "step"
gamma: 0.1
stepsize: 5000
display: 50
max_iter: 450000
momentum: 0.9
weight_decay: 0.0005
snapshot: 10000
snapshot_prefix: "snapshot_full/VGG16_imagenet_train"
solver_mode: GPU
name: "VGG_ILSVRC_16_layers"
layers {
top: "data"
top: "label"
name: "data"
type: DATA
data_param {
source: "/research/cbi/jmzhang_work_dir/caffe-openhero/examples/imagenet_sbt_finetune/sbt_train_leveldb"
backend: LEVELDB
batch_size: 8
}
image_data_param {
shuffle: true
new_height: 256
new_width: 256
}
transform_param {
crop_size: 224
mirror: true
mean_file: "../../data/ilsvrc12/imagenet_mean.binaryproto"
}
include: { phase: TRAIN }
}
layers {
top: "data"
top: "label"
name: "data"
type: DATA
data_param {
source: "/research/cbi/jmzhang_work_dir/caffe-openhero/examples/imagenet_sbt_finetune/sbt_val_leveldb"
backend: LEVELDB
batch_size: 10
}
image_data_param {
new_height: 256
new_width: 256
}
transform_param {
crop_size: 224
mirror: false
mean_file: "../../data/ilsvrc12/imagenet_mean.binaryproto"
}
include: { phase: TEST }
}
layers {
bottom: "data"
top: "conv1_1"
name: "conv1_1"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: CONVOLUTION
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv1_1"
top: "conv1_1"
name: "relu1_1"
type: RELU
}
layers {
bottom: "conv1_1"
top: "conv1_2"
name: "conv1_2"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: CONVOLUTION
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv1_2"
top: "conv1_2"
name: "relu1_2"
type: RELU
}
layers {
bottom: "conv1_2"
top: "pool1"
name: "pool1"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool1"
top: "conv2_1"
name: "conv2_1"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: CONVOLUTION
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv2_1"
top: "conv2_1"
name: "relu2_1"
type: RELU
}
layers {
bottom: "conv2_1"
top: "conv2_2"
name: "conv2_2"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: CONVOLUTION
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv2_2"
top: "conv2_2"
name: "relu2_2"
type: RELU
}
layers {
bottom: "conv2_2"
top: "pool2"
name: "pool2"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool2"
top: "conv3_1"
name: "conv3_1"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: CONVOLUTION
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv3_1"
top: "conv3_1"
name: "relu3_1"
type: RELU
}
layers {
bottom: "conv3_1"
top: "conv3_2"
name: "conv3_2"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: CONVOLUTION
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv3_2"
top: "conv3_2"
name: "relu3_2"
type: RELU
}
layers {
bottom: "conv3_2"
top: "conv3_3"
name: "conv3_3"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: CONVOLUTION
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv3_3"
top: "conv3_3"
name: "relu3_3"
type: RELU
}
layers {
bottom: "conv3_3"
top: "pool3"
name: "pool3"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool3"
top: "conv4_1"
name: "conv4_1"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv4_1"
top: "conv4_1"
name: "relu4_1"
type: RELU
}
layers {
bottom: "conv4_1"
top: "conv4_2"
name: "conv4_2"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv4_2"
top: "conv4_2"
name: "relu4_2"
type: RELU
}
layers {
bottom: "conv4_2"
top: "conv4_3"
name: "conv4_3"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv4_3"
top: "conv4_3"
name: "relu4_3"
type: RELU
}
layers {
bottom: "conv4_3"
top: "pool4"
name: "pool4"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool4"
top: "conv5_1"
name: "conv5_1"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv5_1"
top: "conv5_1"
name: "relu5_1"
type: RELU
}
layers {
bottom: "conv5_1"
top: "conv5_2"
name: "conv5_2"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv5_2"
top: "conv5_2"
name: "relu5_2"
type: RELU
}
layers {
bottom: "conv5_2"
top: "conv5_3"
name: "conv5_3"
type: CONVOLUTION
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv5_3"
top: "conv5_3"
name: "relu5_3"
type: RELU
}
layers {
bottom: "conv5_3"
top: "pool5"
name: "pool5"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool5"
top: "fc6"
name: "fc6"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: INNER_PRODUCT
inner_product_param {
num_output: 4096
}
}
layers {
bottom: "fc6"
top: "fc6"
name: "relu6"
type: RELU
}
layers {
bottom: "fc6"
top: "fc6"
name: "drop6"
type: DROPOUT
dropout_param {
dropout_ratio: 0.5
}
}
layers {
bottom: "fc6"
top: "fc7"
name: "fc7"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: INNER_PRODUCT
inner_product_param {
num_output: 4096
}
}
layers {
bottom: "fc7"
top: "fc7"
name: "relu7"
type: RELU
}
layers {
bottom: "fc7"
top: "fc7"
name: "drop7"
type: DROPOUT
dropout_param {
dropout_ratio: 0.5
}
}
layers {
bottom: "fc7"
top: "fc8"
name: "fc8-5"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
type: INNER_PRODUCT
inner_product_param {
num_output: 5
}
}
layers {
name: "accuracy"
type: ACCURACY
bottom: "fc8"
bottom: "label"
top: "accuracy"
include: { phase: TEST }
}
layers {
bottom: "fc8"
bottom: "label"
name: "loss"
type: SOFTMAX_LOSS
include: { phase: TRAIN }
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment