Skip to content

Instantly share code, notes, and snippets.

@jasongrout
Created August 2, 2011 16:08
Show Gist options
  • Save jasongrout/1120533 to your computer and use it in GitHub Desktop.
Save jasongrout/1120533 to your computer and use it in GitHub Desktop.
Embed a single cell server in a web page
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-type" content="text/html;charset=UTF-8">
<meta name="viewport" content="width=device-width">
<title>Simple Compute Server</title>
<script type="text/javascript" src="http://sagemath.org:5467/static/jquery-1.5.min.js"></script>
<script type="text/javascript" src="http://sagemath.org:5467/embedded_singlecell.js"></script>
<script>
$(function() {
var makecells = function() {
singlecell.makeSinglecell({
inputDiv: '#mysingle',
hide: ['messages', 'computationID', 'files', 'sageMode', 'editor'],
evalButtonText: 'Explore!'
});
}
singlecell.init(makecells);
})</script>
</head>
<body>
<h1>Explore numerical integral approximations</h1>
<p>Click the "Explore" button below to start the Sage interact</p>
<hr/>
<div id="mysingle"><script type="text/code">
# by Nick Alexander (based on the work of Marshall Hampton)
var('x')
@interact
def midpoint(f = input_box(default = sin(x^2) + 2, type = SR),
interval=range_slider(0, 10, 1, default=(0, 4), label="Interval"),
number_of_subdivisions = slider(1, 20, 1, default=4, label="Number of boxes"),
endpoint_rule = selector(['Midpoint', 'Left', 'Right', 'Upper', 'Lower'], nrows=1, label="Endpoint rule")):
a, b = map(QQ, interval)
t = sage.calculus.calculus.var('t')
func = fast_callable(f(x=t), RDF, vars=[t])
dx = ZZ(b-a)/ZZ(number_of_subdivisions)
xs = []
ys = []
for q in range(number_of_subdivisions):
if endpoint_rule == 'Left':
xs.append(q*dx + a)
elif endpoint_rule == 'Midpoint':
xs.append(q*dx + a + dx/2)
elif endpoint_rule == 'Right':
xs.append(q*dx + a + dx)
elif endpoint_rule == 'Upper':
x = find_maximum_on_interval(func, q*dx + a, q*dx + dx + a)[1]
xs.append(x)
elif endpoint_rule == 'Lower':
x = find_minimum_on_interval(func, q*dx + a, q*dx + dx + a)[1]
xs.append(x)
ys = [ func(x) for x in xs ]
rects = Graphics()
for q in range(number_of_subdivisions):
xm = q*dx + dx/2 + a
x = xs[q]
y = ys[q]
rects += line([[xm-dx/2,0],[xm-dx/2,y],[xm+dx/2,y],[xm+dx/2,0]], rgbcolor = (1,0,0))
rects += point((x, y), rgbcolor = (1,0,0))
min_y = min(0, find_minimum_on_interval(func,a,b)[0])
max_y = max(0, find_maximum_on_interval(func,a,b)[0])
# html('<h3>Numerical integrals with the midpoint rule</h3>')
show(plot(func,a,b) + rects, xmin = a, xmax = b, ymin = min_y, ymax = max_y)
def cap(x):
# print only a few digits of precision
if x < 1e-4:
return 0
return RealField(20)(x)
sum_html = "%s \cdot \\left[ %s \\right]" % (dx, ' + '.join([ "f(%s)" % cap(i) for i in xs ]))
num_html = "%s \cdot \\left[ %s \\right]" % (dx, ' + '.join([ str(cap(i)) for i in ys ]))
numerical_answer = integral_numerical(func,a,b,max_points = 200)[0]
estimated_answer = dx * sum([ ys[q] for q in range(number_of_subdivisions)])
html(r'''
<div class="math">
\begin{align*}
\int_{a}^{b} {f(x) \, dx} & = %s \\\
\sum_{i=1}^{%s} {f(x_i) \, \Delta x}
& = %s \\\
& = %s \\\
& = %s .
\end{align*}
</div>
''' % (numerical_answer, number_of_subdivisions, sum_html, num_html, estimated_answer))
</script></div>
</body>
</html>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment