Last active
October 17, 2017 11:40
-
-
Save jamis/381557991aafc3f86569 to your computer and use it in GitHub Desktop.
Generate and display a toroidal grid (adaptively subdivided to reduce distortion).
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
require 'chunky_png' | |
class ToroidalGrid | |
class Cell | |
attr_reader :row, :column | |
attr_reader :north, :south | |
attr_accessor :east, :west | |
def initialize(row, column) | |
@row, @column = row, column | |
@north, @south = [], [] | |
@east = @west = nil | |
@links = {} | |
end | |
def neighbors | |
[ east, west, *north, *south ].compact | |
end | |
def link!(neighbor, once=false) | |
@links[neighbor] = true | |
neighbor.link!(self, true) unless once | |
end | |
def linked?(neighbor) | |
@links[neighbor] | |
end | |
def links | |
@links.keys | |
end | |
end | |
attr_reader :row_count, :minor_radius | |
def initialize(row_count, minor_radius) | |
raise ArgumentError, "must have at least 3 rows" if row_count < 3 | |
raise ArgumentError, "minor radius must be in (0,1)" if minor_radius <= 0 || minor_radius >= 1 | |
@row_count = row_count | |
@minor_radius = minor_radius | |
configure_grid! | |
end | |
def configure_grid! | |
@rows = Array.new(row_count) | |
# angular height of a single row (unit circle) | |
theta = 2 * Math::PI / row_count | |
# minor circumference of the torus (poloidal distance) | |
minor_circ = 2 * Math::PI * minor_radius | |
row_height = minor_circ / row_count | |
# the row with the largest dimension, and maximum # of cells | |
equator = (row_count-1) / 2 | |
# south side of first row == outermost major circumference | |
# north side of last row == south side of first row | |
row_count.times do |row_idx| | |
north_angle = theta * row_idx | |
south_angle = theta * (row_idx + 1) | |
# 1 == major radius of torus | |
# north/south radius -- radius of the circle formed by the | |
# boundary on that side of the current row | |
south_radius = 1 - minor_radius * Math.cos(south_angle) | |
north_radius = 1 - minor_radius * Math.cos(north_angle) | |
# distance around the torus for the given boundary of the current | |
# row | |
south_circ = 2 * Math::PI * south_radius | |
north_circ = 2 * Math::PI * north_radius | |
longest = [south_circ, north_circ].max | |
ideal_count = longest / row_height | |
if row_idx == 0 | |
count = [1, ideal_count.round].max | |
elsif row_idx > equator | |
mirror = @rows.length - row_idx - 1 | |
count = @rows[mirror].length | |
else | |
prior_count = @rows[row_idx-1].length | |
if ideal_count < (prior_count * 2.0 / 3) | |
count = prior_count / 2 | |
elsif ideal_count > (prior_count * 3.0 / 2) | |
count = prior_count * 2 | |
else | |
count = prior_count | |
end | |
end | |
row = @rows[row_idx] = Array.new(count) { |col| Cell.new(row_idx, col) } | |
configure_row!(row) | |
end | |
# account for the north/south boundary wrapping | |
@rows[0].each do |cell| | |
neighbor = @rows[-1][cell.column] | |
cell.north.push neighbor | |
neighbor.south.push cell | |
end | |
end | |
def configure_row!(row) | |
first_cell = row[0] | |
north = first_cell.row > 0 ? @rows[first_cell.row-1] : nil | |
row.each do |cell| | |
if north | |
if north.length == row.length | |
cell.north.push north[cell.column] | |
elsif north.length < row.length | |
cell.north.push north[cell.column/2] | |
else | |
cell.north.push north[cell.column*2] | |
cell.north.push north[cell.column*2+1] | |
end | |
cell.north.each { |c| c.south.push(cell) } | |
end | |
cell.west = row[(cell.column-1) % row.length] | |
cell.east = row[(cell.column+1) % row.length] | |
end | |
end | |
def each_row | |
@rows.each do |row| | |
yield row | |
end | |
self | |
end | |
def each_cell | |
each_row do |row| | |
row.each do |cell| | |
yield cell | |
end | |
end | |
end | |
def sample | |
@rows.flatten.sample | |
end | |
def [](row, column) | |
@rows[row][column] | |
end | |
def to_png(size: 10) | |
equator = @rows.length / 2 | |
img_width = @rows[equator].length * size | |
img_height = @rows.length * size | |
background = ChunkyPNG::Color::WHITE | |
wall = ChunkyPNG::Color::BLACK | |
img = ChunkyPNG::Image.new(img_width, img_height, background) | |
each_cell do |cell| | |
y1 = cell.row * size | |
y2 = (cell.row+1) * size - 1 | |
cell_width = img_width / @rows[cell.row].length.to_f | |
x1 = (cell.column * cell_width).round | |
img.line(x1, y1, x1, y2, wall) if !cell.linked?(cell.west) | |
wall_inc = cell_width / cell.south.length | |
walls = (0..cell.south.length).map { |i| (x1 + wall_inc * i).round } | |
cell.south.each_with_index do |neighbor, idx| | |
if !cell.linked?(neighbor) | |
img.line(walls[idx], y2, walls[idx+1], y2, wall) | |
end | |
end | |
end | |
img | |
end | |
end | |
grid = ToroidalGrid.new(16, 0.5) | |
grid.to_png.save("torus-grid.png") | |
stack = [ grid.sample ] | |
while stack.any? | |
current = stack.last | |
neighbor = current.neighbors.select { |n| n.links.empty? }.sample | |
if neighbor | |
current.link!(neighbor) | |
stack.push(neighbor) | |
else | |
stack.pop | |
end | |
end | |
grid.to_png.save("torus-maze.png") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment