Skip to content

Instantly share code, notes, and snippets.

@inaz2
Last active September 18, 2023 12:08
Show Gist options
  • Save inaz2/df13aaa38c4f4d685d1de86a54799891 to your computer and use it in GitHub Desktop.
Save inaz2/df13aaa38c4f4d685d1de86a54799891 to your computer and use it in GitHub Desktop.
Pollard-rho algorithm in Golang and math/big
$ go version
go version go1.21.0 linux/amd64
$ go build -ldflags="-s -w" -trimpath pollardRho.go
$ time ./pollardRho 12814570762777948741
12814570762777948741 = 3861801803 * 3318288047
real 0m0.160s
user 0m0.060s
sys 0m0.103s
$ time ./pollardRho 60766145992321225002169406923
60766145992321225002169406923 = 250117558771727 * 242950340194949
real 0m26.342s
user 0m24.501s
sys 0m2.392s
$ python3 --version
Python 3.10.12
$ time python3 pollard_rho.py 12814570762777948741
12814570762777948741 = 3861801803 * 3318288047
real 0m0.119s
user 0m0.102s
sys 0m0.016s
$ time python3 pollard_rho.py 60766145992321225002169406923
60766145992321225002169406923 = 250117558771727 * 242950340194949
real 0m15.385s
user 0m15.365s
sys 0m0.013s
import sys
from random import randint
from math import gcd
def miller_rabin(n, k=20):
s, d = 0, n-1
while d % 2 == 0:
s += 1
d //= 2
for i in range(k):
a = randint(2, n-1)
x = pow(a, d, n)
if x == 1:
continue
for r in range(s):
if x == n-1:
break
x = (x*x) % n
else:
return False
return True
def pollard_rho(n):
x, y, d = 2, 2, 1
while d == 1:
x = (x*x + 1) % n
y = (y*y + 1) % n
y = (y*y + 1) % n
d = gcd(abs(x-y), n)
if d != n:
return d
if __name__ == '__main__':
n = int(sys.argv[1])
is_prime = miller_rabin(n)
if is_prime:
print('{} is prime'.format(n))
else:
p = pollard_rho(n)
if p:
print('{} = {} * {}'.format(n, p, n//p))
else:
print('{} is prime'.format(n))
package main
import (
"fmt"
"os"
"math/big"
)
func pollardRho(n *big.Int) (*big.Int, bool) {
x := big.NewInt(2)
y := big.NewInt(2)
d := big.NewInt(1)
one := big.NewInt(1)
for d.Cmp(one) == 0 {
x.Mul(x, x); x.Add(x, one); x.Mod(x, n)
y.Mul(y, y); y.Add(y, one); y.Mod(y, n)
y.Mul(y, y); y.Add(y, one); y.Mod(y, n)
d.Sub(x, y); d.Abs(d); d.GCD(nil, nil, d, n)
}
if d.Cmp(n) != 0 {
return d, true
} else {
return nil, false
}
}
func main() {
if len(os.Args) < 2 {
fmt.Printf("Usage: %v N\n", os.Args[0])
os.Exit(1)
}
n := new(big.Int)
if _, ok := n.SetString(os.Args[1], 0); !ok {
fmt.Printf("Error: \"%v\" is not valid format. Supported prefixes are \"0b\", \"0o\", \"0x\".\n", os.Args[1])
os.Exit(1)
}
if n.ProbablyPrime(20) {
fmt.Printf("%v is prime\n", n)
} else {
p, ok := pollardRho(n)
if ok {
q := new(big.Int).Div(n, p)
fmt.Printf("%v = %v * %v\n", n, p, q)
} else {
fmt.Printf("%v is prime\n", n)
}
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment