Skip to content

Instantly share code, notes, and snippets.

@igorw
Created December 28, 2014 17:50
Show Gist options
  • Save igorw/54cd172fc1d1588718f4 to your computer and use it in GitHub Desktop.
Save igorw/54cd172fc1d1588718f4 to your computer and use it in GitHub Desktop.
miniKanren implementation of Lewis Carroll's "Fox, Goose, and Bag of Corn" puzzle, described by Carin Meier (@gigasquid)
; miniKanren solution to fox-goose-bag-of-corn
; https://github.com/gigasquid/wonderland-clojure-katas/blob/master/fox-goose-bag-of-corn/README.md
(load "mk.scm")
(define print
(lambda (exp)
(display exp)
(newline)))
(define moveo
(lambda (you-in fox-in goose-in corn-in you-out fox-out goose-out corn-out freight)
(fresh ()
(conde
[(== you-in 'l) (== you-out 'r)]
[(== you-in 'r) (== you-out 'l)])
(conde
[(== freight 'fox)
(== you-in fox-in) (== you-out fox-out)
(== goose-in goose-out) (== corn-in corn-out)
(=/= goose-out corn-out)]
[(== freight 'goose)
(== you-in goose-in) (== you-out goose-out)
(== fox-in fox-out) (== corn-in corn-out)]
[(== freight 'corn)
(== you-in corn-in) (== you-out corn-out)
(== fox-in fox-out) (== goose-in goose-out)
(=/= fox-out goose-out)]
[(== freight 'none)
(== fox-in fox-out)
(== goose-in goose-out)
(== corn-in corn-out)
(=/= goose-out corn-out)
(=/= fox-out goose-out)]))))
(define move*o
(lambda (you-in fox-in goose-in corn-in you-out fox-out goose-out corn-out freight*)
(fresh (you^ fox^ goose^ corn^ freight^ d)
(moveo you-in fox-in goose-in corn-in you^ fox^ goose^ corn^ freight^)
(conde
[(== `(,you^ ,fox^ ,goose^ ,corn^)
`(,you-out ,fox-out ,goose-out ,corn-out))
(== freight* `(,freight^))]
[(== freight* `(,freight^ . ,d))
(move*o you^ fox^ goose^ corn^ you-out fox-out goose-out corn-out d)]))))
; (map print (run 5 (you fox goose corn freight) (moveo 'l 'l 'l 'l you fox goose corn freight)))
; (map print (run 5 (you fox goose corn freight) (moveo 'r 'l 'r 'l you fox goose corn freight)))
; (map print (run 20 (you fox goose corn freight*) (move*o 'l 'l 'l 'l you fox goose corn freight*)))
(map print (run 5 (freight*) (move*o 'l 'l 'l 'l 'r 'r 'r 'r freight*)))
;;; 28 November 02014 WEB
;;;
;;; * Fixed missing unquote before E in 'drop-Y-b/c-dup-var'
;;;
;;; * Updated 'rem-xx-from-d' to check against other constraints after
;;; unification, in order to remove redundant disequality constraints
;;; subsumed by absento constraints.
;;; newer version: Sept. 18 2013 (with eigens)
;;; Jason Hemann, Will Byrd, and Dan Friedman
;;; E = (e* . x*)*, where e* is a list of eigens and x* is a list of variables.
;;; Each e in e* is checked for any of its eigens be in any of its x*. Then it fails.
;;; Since eigen-occurs-check is chasing variables, we might as will do a memq instead
;;; of an eq? when an eigen is found through a chain of walks. See eigen-occurs-check.
;;; All the e* must be the eigens created as part of a single eigen. The reifier just
;;; abandons E, if it succeeds. If there is no failure by then, there were no eigen
;;; violations.
(define sort list-sort)
(define empty-c '(() () () () () () ()))
(define eigen-tag (vector 'eigen-tag))
(define-syntax inc
(syntax-rules ()
((_ e) (lambdaf@ () e))))
(define-syntax lambdaf@
(syntax-rules ()
((_ () e) (lambda () e))))
(define-syntax lambdag@
(syntax-rules (:)
((_ (c) e) (lambda (c) e))
((_ (c : B E S) e)
(lambda (c)
(let ((B (c->B c)) (E (c->E c)) (S (c->S c)))
e)))
((_ (c : B E S D Y N T) e)
(lambda (c)
(let ((B (c->B c)) (E (c->E c)) (S (c->S c)) (D (c->D c))
(Y (c->Y c)) (N (c->N c)) (T (c->T c)))
e)))))
(define rhs
(lambda (pr)
(cdr pr)))
(define lhs
(lambda (pr)
(car pr)))
(define eigen-var
(lambda ()
(vector eigen-tag)))
(define eigen?
(lambda (x)
(and (vector? x) (eq? (vector-ref x 0) eigen-tag))))
(define var
(lambda (dummy)
(vector dummy)))
(define var?
(lambda (x)
(and (vector? x) (not (eq? (vector-ref x 0) eigen-tag)))))
(define walk
(lambda (u S)
(cond
((and (var? u) (assq u S)) =>
(lambda (pr) (walk (rhs pr) S)))
(else u))))
(define prefix-S
(lambda (S+ S)
(cond
((eq? S+ S) '())
(else (cons (car S+)
(prefix-S (cdr S+) S))))))
(define unify
(lambda (u v s)
(let ((u (walk u s))
(v (walk v s)))
(cond
((eq? u v) s)
((var? u) (ext-s-check u v s))
((var? v) (ext-s-check v u s))
((and (pair? u) (pair? v))
(let ((s (unify (car u) (car v) s)))
(and s (unify (cdr u) (cdr v) s))))
((or (eigen? u) (eigen? v)) #f)
((equal? u v) s)
(else #f)))))
(define occurs-check
(lambda (x v s)
(let ((v (walk v s)))
(cond
((var? v) (eq? v x))
((pair? v)
(or
(occurs-check x (car v) s)
(occurs-check x (cdr v) s)))
(else #f)))))
(define eigen-occurs-check
(lambda (e* x s)
(let ((x (walk x s)))
(cond
((var? x) #f)
((eigen? x) (memq x e*))
((pair? x)
(or
(eigen-occurs-check e* (car x) s)
(eigen-occurs-check e* (cdr x) s)))
(else #f)))))
(define empty-f (lambdaf@ () (mzero)))
(define ext-s-check
(lambda (x v s)
(cond
((occurs-check x v s) #f)
(else (cons `(,x . ,v) s)))))
(define unify*
(lambda (S+ S)
(unify (map lhs S+) (map rhs S+) S)))
(define-syntax case-inf
(syntax-rules ()
((_ e (() e0) ((f^) e1) ((c^) e2) ((c f) e3))
(let ((c-inf e))
(cond
((not c-inf) e0)
((procedure? c-inf) (let ((f^ c-inf)) e1))
((not (and (pair? c-inf)
(procedure? (cdr c-inf))))
(let ((c^ c-inf)) e2))
(else (let ((c (car c-inf)) (f (cdr c-inf)))
e3)))))))
(define-syntax fresh
(syntax-rules ()
((_ (x ...) g0 g ...)
(lambdag@ (c : B E S D Y N T)
(inc
(let ((x (var 'x)) ...)
(let ((B (append `(,x ...) B)))
(bind* (g0 `(,B ,E ,S ,D ,Y ,N ,T)) g ...))))))))
(define-syntax eigen
(syntax-rules ()
((_ (x ...) g0 g ...)
(lambdag@ (c : B E S)
(let ((x (eigen-var)) ...)
((fresh () (eigen-absento `(,x ...) B) g0 g ...) c))))))
(define-syntax bind*
(syntax-rules ()
((_ e) e)
((_ e g0 g ...) (bind* (bind e g0) g ...))))
(define bind
(lambda (c-inf g)
(case-inf c-inf
(() (mzero))
((f) (inc (bind (f) g)))
((c) (g c))
((c f) (mplus (g c) (lambdaf@ () (bind (f) g)))))))
(define-syntax run
(syntax-rules ()
((_ n (q) g0 g ...)
(take n
(lambdaf@ ()
((fresh (q) g0 g ...
(lambdag@ (final-c)
(let ((z ((reify q) final-c)))
(choice z empty-f))))
empty-c))))
((_ n (q0 q1 q ...) g0 g ...)
(run n (x) (fresh (q0 q1 q ...) g0 g ... (== `(,q0 ,q1 ,q ...) x))))))
(define-syntax run*
(syntax-rules ()
((_ (q0 q ...) g0 g ...) (run #f (q0 q ...) g0 g ...))))
(define take
(lambda (n f)
(cond
((and n (zero? n)) '())
(else
(case-inf (f)
(() '())
((f) (take n f))
((c) (cons c '()))
((c f) (cons c
(take (and n (- n 1)) f))))))))
(define-syntax conde
(syntax-rules ()
((_ (g0 g ...) (g1 g^ ...) ...)
(lambdag@ (c)
(inc
(mplus*
(bind* (g0 c) g ...)
(bind* (g1 c) g^ ...) ...))))))
(define-syntax mplus*
(syntax-rules ()
((_ e) e)
((_ e0 e ...) (mplus e0
(lambdaf@ () (mplus* e ...))))))
(define mplus
(lambda (c-inf f)
(case-inf c-inf
(() (f))
((f^) (inc (mplus (f) f^)))
((c) (choice c f))
((c f^) (choice c (lambdaf@ () (mplus (f) f^)))))))
(define c->B (lambda (c) (car c)))
(define c->E (lambda (c) (cadr c)))
(define c->S (lambda (c) (caddr c)))
(define c->D (lambda (c) (cadddr c)))
(define c->Y (lambda (c) (cadddr (cdr c))))
(define c->N (lambda (c) (cadddr (cddr c))))
(define c->T (lambda (c) (cadddr (cdddr c))))
(define-syntax conda
(syntax-rules ()
((_ (g0 g ...) (g1 g^ ...) ...)
(lambdag@ (c)
(inc
(ifa ((g0 c) g ...)
((g1 c) g^ ...) ...))))))
(define-syntax ifa
(syntax-rules ()
((_) (mzero))
((_ (e g ...) b ...)
(let loop ((c-inf e))
(case-inf c-inf
(() (ifa b ...))
((f) (inc (loop (f))))
((a) (bind* c-inf g ...))
((a f) (bind* c-inf g ...)))))))
(define-syntax condu
(syntax-rules ()
((_ (g0 g ...) (g1 g^ ...) ...)
(lambdag@ (c)
(inc
(ifu ((g0 c) g ...)
((g1 c) g^ ...) ...))))))
(define-syntax ifu
(syntax-rules ()
((_) (mzero))
((_ (e g ...) b ...)
(let loop ((c-inf e))
(case-inf c-inf
(() (ifu b ...))
((f) (inc (loop (f))))
((c) (bind* c-inf g ...))
((c f) (bind* (unit c) g ...)))))))
(define mzero (lambda () #f))
(define unit (lambda (c) c))
(define choice (lambda (c f) (cons c f)))
(define tagged?
(lambda (S Y y^)
(exists (lambda (y) (eqv? (walk y S) y^)) Y)))
(define untyped-var?
(lambda (S Y N t^)
(let ((in-type? (lambda (y) (eq? (walk y S) t^))))
(and (var? t^)
(not (exists in-type? Y))
(not (exists in-type? N))))))
(define-syntax project
(syntax-rules ()
((_ (x ...) g g* ...)
(lambdag@ (c : B E S)
(let ((x (walk* x S)) ...)
((fresh () g g* ...) c))))))
(define walk*
(lambda (v S)
(let ((v (walk v S)))
(cond
((var? v) v)
((pair? v)
(cons (walk* (car v) S) (walk* (cdr v) S)))
(else v)))))
(define reify-S
(lambda (v S)
(let ((v (walk v S)))
(cond
((var? v)
(let ((n (length S)))
(let ((name (reify-name n)))
(cons `(,v . ,name) S))))
((pair? v)
(let ((S (reify-S (car v) S)))
(reify-S (cdr v) S)))
(else S)))))
(define reify-name
(lambda (n)
(string->symbol
(string-append "_" "." (number->string n)))))
(define drop-dot
(lambda (X)
(map (lambda (t)
(let ((a (lhs t))
(d (rhs t)))
`(,a ,d)))
X)))
(define sorter
(lambda (ls)
(sort lex<=? ls)))
(define lex<=?
(lambda (x y)
(string<=? (datum->string x) (datum->string y))))
(define datum->string
(lambda (x)
(call-with-string-output-port
(lambda (p) (display x p)))))
(define anyvar?
(lambda (u r)
(cond
((pair? u)
(or (anyvar? (car u) r)
(anyvar? (cdr u) r)))
(else (var? (walk u r))))))
(define anyeigen?
(lambda (u r)
(cond
((pair? u)
(or (anyeigen? (car u) r)
(anyeigen? (cdr u) r)))
(else (eigen? (walk u r))))))
(define member*
(lambda (u v)
(cond
((equal? u v) #t)
((pair? v)
(or (member* u (car v)) (member* u (cdr v))))
(else #f))))
;;;
(define drop-N-b/c-const
(lambdag@ (c : B E S D Y N T)
(let ((const? (lambda (n)
(not (var? (walk n S))))))
(cond
((find const? N) =>
(lambda (n) `(,B ,E ,S ,D ,Y ,(remq1 n N) ,T)))
(else c)))))
(define drop-Y-b/c-const
(lambdag@ (c : B E S D Y N T)
(let ((const? (lambda (y)
(not (var? (walk y S))))))
(cond
((find const? Y) =>
(lambda (y) `(,B ,E ,S ,D ,(remq1 y Y) ,N ,T)))
(else c)))))
(define remq1
(lambda (elem ls)
(cond
((null? ls) '())
((eq? (car ls) elem) (cdr ls))
(else (cons (car ls) (remq1 elem (cdr ls)))))))
(define same-var?
(lambda (v)
(lambda (v^)
(and (var? v) (var? v^) (eq? v v^)))))
(define find-dup
(lambda (f S)
(lambda (set)
(let loop ((set^ set))
(cond
((null? set^) #f)
(else
(let ((elem (car set^)))
(let ((elem^ (walk elem S)))
(cond
((find (lambda (elem^^)
((f elem^) (walk elem^^ S)))
(cdr set^))
elem)
(else (loop (cdr set^))))))))))))
(define drop-N-b/c-dup-var
(lambdag@ (c : B E S D Y N T)
(cond
(((find-dup same-var? S) N) =>
(lambda (n) `(,B ,E ,S ,D ,Y ,(remq1 n N) ,T)))
(else c))))
(define drop-Y-b/c-dup-var
(lambdag@ (c : B E S D Y N T)
(cond
(((find-dup same-var? S) Y) =>
(lambda (y)
`(,B ,E ,S ,D ,(remq1 y Y) ,N ,T)))
(else c))))
(define var-type-mismatch?
(lambda (S Y N t1^ t2^)
(cond
((num? S N t1^) (not (num? S N t2^)))
((sym? S Y t1^) (not (sym? S Y t2^)))
(else #f))))
(define term-ununifiable?
(lambda (S Y N t1 t2)
(let ((t1^ (walk t1 S))
(t2^ (walk t2 S)))
(cond
((or (untyped-var? S Y N t1^) (untyped-var? S Y N t2^)) #f)
((var? t1^) (var-type-mismatch? S Y N t1^ t2^))
((var? t2^) (var-type-mismatch? S Y N t2^ t1^))
((and (pair? t1^) (pair? t2^))
(or (term-ununifiable? S Y N (car t1^) (car t2^))
(term-ununifiable? S Y N (cdr t1^) (cdr t2^))))
(else (not (eqv? t1^ t2^)))))))
(define T-term-ununifiable?
(lambda (S Y N)
(lambda (t1)
(let ((t1^ (walk t1 S)))
(letrec
((t2-check
(lambda (t2)
(let ((t2^ (walk t2 S)))
(cond
((pair? t2^) (and
(term-ununifiable? S Y N t1^ t2^)
(t2-check (car t2^))
(t2-check (cdr t2^))))
(else (term-ununifiable? S Y N t1^ t2^)))))))
t2-check)))))
(define num?
(lambda (S N n)
(let ((n (walk n S)))
(cond
((var? n) (tagged? S N n))
(else (number? n))))))
(define sym?
(lambda (S Y y)
(let ((y (walk y S)))
(cond
((var? y) (tagged? S Y y))
(else (symbol? y))))))
(define drop-T-b/c-Y-and-N
(lambdag@ (c : B E S D Y N T)
(let ((drop-t? (T-term-ununifiable? S Y N)))
(cond
((find (lambda (t) ((drop-t? (lhs t)) (rhs t))) T) =>
(lambda (t) `(,B ,E ,S ,D ,Y ,N ,(remq1 t T))))
(else c)))))
(define move-T-to-D-b/c-t2-atom
(lambdag@ (c : B E S D Y N T)
(cond
((exists (lambda (t)
(let ((t2^ (walk (rhs t) S)))
(cond
((and (not (untyped-var? S Y N t2^))
(not (pair? t2^)))
(let ((T (remq1 t T)))
`(,B ,E ,S ((,t) . ,D) ,Y ,N ,T)))
(else #f))))
T))
(else c))))
(define terms-pairwise=?
(lambda (pr-a^ pr-d^ t-a^ t-d^ S)
(or
(and (term=? pr-a^ t-a^ S)
(term=? pr-d^ t-a^ S))
(and (term=? pr-a^ t-d^ S)
(term=? pr-d^ t-a^ S)))))
(define T-superfluous-pr?
(lambda (S Y N T)
(lambda (pr)
(let ((pr-a^ (walk (lhs pr) S))
(pr-d^ (walk (rhs pr) S)))
(cond
((exists
(lambda (t)
(let ((t-a^ (walk (lhs t) S))
(t-d^ (walk (rhs t) S)))
(terms-pairwise=? pr-a^ pr-d^ t-a^ t-d^ S)))
T)
(for-all
(lambda (t)
(let ((t-a^ (walk (lhs t) S))
(t-d^ (walk (rhs t) S)))
(or
(not (terms-pairwise=? pr-a^ pr-d^ t-a^ t-d^ S))
(untyped-var? S Y N t-d^)
(pair? t-d^))))
T))
(else #f))))))
(define drop-from-D-b/c-T
(lambdag@ (c : B E S D Y N T)
(cond
((find
(lambda (d)
(exists
(T-superfluous-pr? S Y N T)
d))
D) =>
(lambda (d) `(,B ,E ,S ,(remq1 d D) ,Y ,N ,T)))
(else c))))
(define drop-t-b/c-t2-occurs-t1
(lambdag@ (c : B E S D Y N T)
(cond
((find (lambda (t)
(let ((t-a^ (walk (lhs t) S))
(t-d^ (walk (rhs t) S)))
(mem-check t-d^ t-a^ S)))
T) =>
(lambda (t)
`(,B ,E ,S ,D ,Y ,N ,(remq1 t T))))
(else c))))
(define split-t-move-to-d-b/c-pair
(lambdag@ (c : B E S D Y N T)
(cond
((exists
(lambda (t)
(let ((t2^ (walk (rhs t) S)))
(cond
((pair? t2^) (let ((ta `(,(lhs t) . ,(car t2^)))
(td `(,(lhs t) . ,(cdr t2^))))
(let ((T `(,ta ,td . ,(remq1 t T))))
`(,B ,E ,S ((,t) . ,D) ,Y ,N ,T))))
(else #f))))
T))
(else c))))
(define find-d-conflict
(lambda (S Y N)
(lambda (D)
(find
(lambda (d)
(exists (lambda (pr)
(term-ununifiable? S Y N (lhs pr) (rhs pr)))
d))
D))))
(define drop-D-b/c-Y-or-N
(lambdag@ (c : B E S D Y N T)
(cond
(((find-d-conflict S Y N) D) =>
(lambda (d) `(,B ,E ,S ,(remq1 d D) ,Y ,N ,T)))
(else c))))
(define cycle
(lambdag@ (c)
(let loop ((c^ c)
(fns^ (LOF))
(n (length (LOF))))
(cond
((zero? n) c^)
((null? fns^) (loop c^ (LOF) n))
(else
(let ((c^^ ((car fns^) c^)))
(cond
((not (eq? c^^ c^))
(loop c^^ (cdr fns^) (length (LOF))))
(else (loop c^ (cdr fns^) (sub1 n))))))))))
(define absento
(lambda (u v)
(lambdag@ (c : B E S D Y N T)
(cond
[(mem-check u v S) (mzero)]
[else (unit `(,B ,E ,S ,D ,Y ,N ((,u . ,v) . ,T)))]))))
(define eigen-absento
(lambda (e* x*)
(lambdag@ (c : B E S D Y N T)
(cond
[(eigen-occurs-check e* x* S) (mzero)]
[else (unit `(,B ((,e* . ,x*) . ,E) ,S ,D ,Y ,N ,T))]))))
(define mem-check
(lambda (u t S)
(let ((t (walk t S)))
(cond
((pair? t)
(or (term=? u t S)
(mem-check u (car t) S)
(mem-check u (cdr t) S)))
(else (term=? u t S))))))
(define term=?
(lambda (u t S)
(cond
((unify u t S) =>
(lambda (S0)
(eq? S0 S)))
(else #f))))
(define ground-non-<type>?
(lambda (pred)
(lambda (u S)
(let ((u (walk u S)))
(cond
((var? u) #f)
(else (not (pred u))))))))
;; moved
(define ground-non-symbol?
(ground-non-<type>? symbol?))
(define ground-non-number?
(ground-non-<type>? number?))
(define symbolo
(lambda (u)
(lambdag@ (c : B E S D Y N T)
(cond
[(ground-non-symbol? u S) (mzero)]
[(mem-check u N S) (mzero)]
[else (unit `(,B ,E ,S ,D (,u . ,Y) ,N ,T))]))))
(define numbero
(lambda (u)
(lambdag@ (c : B E S D Y N T)
(cond
[(ground-non-number? u S) (mzero)]
[(mem-check u Y S) (mzero)]
[else (unit `(,B ,E ,S ,D ,Y (,u . ,N) ,T))]))))
;; end moved
(define =/= ;; moved
(lambda (u v)
(lambdag@ (c : B E S D Y N T)
(cond
((unify u v S) =>
(lambda (S0)
(let ((pfx (prefix-S S0 S)))
(cond
((null? pfx) (mzero))
(else (unit `(,B ,E ,S (,pfx . ,D) ,Y ,N ,T)))))))
(else c)))))
(define ==
(lambda (u v)
(lambdag@ (c : B E S D Y N T)
(cond
((unify u v S) =>
(lambda (S0)
(cond
((==fail-check B E S0 D Y N T) (mzero))
(else (unit `(,B ,E ,S0 ,D ,Y ,N ,T))))))
(else (mzero))))))
(define succeed (== #f #f))
(define fail (== #f #t))
(define ==fail-check
(lambda (B E S0 D Y N T)
(cond
((eigen-absento-fail-check E S0) #t)
((atomic-fail-check S0 Y ground-non-symbol?) #t)
((atomic-fail-check S0 N ground-non-number?) #t)
((symbolo-numbero-fail-check S0 Y N) #t)
((=/=-fail-check S0 D) #t)
((absento-fail-check S0 T) #t)
(else #f))))
(define eigen-absento-fail-check
(lambda (E S0)
(exists (lambda (e*/x*) (eigen-occurs-check (car e*/x*) (cdr e*/x*) S0)) E)))
(define atomic-fail-check
(lambda (S A pred)
(exists (lambda (a) (pred (walk a S) S)) A)))
(define symbolo-numbero-fail-check
(lambda (S A N)
(let ((N (map (lambda (n) (walk n S)) N)))
(exists (lambda (a) (exists (same-var? (walk a S)) N))
A))))
(define absento-fail-check
(lambda (S T)
(exists (lambda (t) (mem-check (lhs t) (rhs t) S)) T)))
(define =/=-fail-check
(lambda (S D)
(exists (d-fail-check S) D)))
(define d-fail-check
(lambda (S)
(lambda (d)
(cond
((unify* d S) =>
(lambda (S+) (eq? S+ S)))
(else #f)))))
(define reify
(lambda (x)
(lambda (c)
(let ((c (cycle c)))
(let* ((S (c->S c))
(D (walk* (c->D c) S))
(Y (walk* (c->Y c) S))
(N (walk* (c->N c) S))
(T (walk* (c->T c) S)))
(let ((v (walk* x S)))
(let ((R (reify-S v '())))
(reify+ v R
(let ((D (remp
(lambda (d)
(let ((dw (walk* d S)))
(or
(anyvar? dw R)
(anyeigen? dw R))))
(rem-xx-from-d c))))
(rem-subsumed D))
(remp
(lambda (y) (var? (walk y R)))
Y)
(remp
(lambda (n) (var? (walk n R)))
N)
(remp (lambda (t)
(or (anyeigen? t R) (anyvar? t R))) T)))))))))
(define reify+
(lambda (v R D Y N T)
(form (walk* v R)
(walk* D R)
(walk* Y R)
(walk* N R)
(rem-subsumed-T (walk* T R)))))
(define form
(lambda (v D Y N T)
(let ((fd (sort-D D))
(fy (sorter Y))
(fn (sorter N))
(ft (sorter T)))
(let ((fd (if (null? fd) fd
(let ((fd (drop-dot-D fd)))
`((=/= . ,fd)))))
(fy (if (null? fy) fy `((sym . ,fy))))
(fn (if (null? fn) fn `((num . ,fn))))
(ft (if (null? ft) ft
(let ((ft (drop-dot ft)))
`((absento . ,ft))))))
(cond
((and (null? fd) (null? fy)
(null? fn) (null? ft))
v)
(else (append `(,v) fd fn fy ft)))))))
(define sort-D
(lambda (D)
(sorter
(map sort-d D))))
(define sort-d
(lambda (d)
(sort
(lambda (x y)
(lex<=? (car x) (car y)))
(map sort-pr d))))
(define drop-dot-D
(lambda (D)
(map drop-dot D)))
(define lex<-reified-name?
(lambda (r)
(char<?
(string-ref
(datum->string r) 0)
#\_)))
(define sort-pr
(lambda (pr)
(let ((l (lhs pr))
(r (rhs pr)))
(cond
((lex<-reified-name? r) pr)
((lex<=? r l) `(,r . ,l))
(else pr)))))
(define rem-subsumed
(lambda (D)
(let rem-subsumed ((D D) (d^* '()))
(cond
((null? D) d^*)
((or (subsumed? (car D) (cdr D))
(subsumed? (car D) d^*))
(rem-subsumed (cdr D) d^*))
(else (rem-subsumed (cdr D)
(cons (car D) d^*)))))))
(define subsumed?
(lambda (d d*)
(cond
((null? d*) #f)
(else
(let ((d^ (unify* (car d*) d)))
(or
(and d^ (eq? d^ d))
(subsumed? d (cdr d*))))))))
(define rem-xx-from-d
(lambdag@ (c : B E S D Y N T)
(let ((D (walk* D S)))
(remp not
(map (lambda (d)
(cond
((unify* d S) =>
(lambda (S0)
(cond
((==fail-check B E S0 '() Y N T) #f)
(else (prefix-S S0 S)))))
(else #f)))
D)))))
(define rem-subsumed-T
(lambda (T)
(let rem-subsumed ((T T) (T^ '()))
(cond
((null? T) T^)
(else
(let ((lit (lhs (car T)))
(big (rhs (car T))))
(cond
((or (subsumed-T? lit big (cdr T))
(subsumed-T? lit big T^))
(rem-subsumed (cdr T) T^))
(else (rem-subsumed (cdr T)
(cons (car T) T^))))))))))
(define subsumed-T?
(lambda (lit big T)
(cond
((null? T) #f)
(else
(let ((lit^ (lhs (car T)))
(big^ (rhs (car T))))
(or
(and (eq? big big^) (member* lit^ lit))
(subsumed-T? lit big (cdr T))))))))
(define LOF
(lambda ()
`(,drop-N-b/c-const ,drop-Y-b/c-const ,drop-Y-b/c-dup-var
,drop-N-b/c-dup-var ,drop-D-b/c-Y-or-N ,drop-T-b/c-Y-and-N
,move-T-to-D-b/c-t2-atom ,split-t-move-to-d-b/c-pair
,drop-from-D-b/c-T ,drop-t-b/c-t2-occurs-t1)))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment