-
-
Save iesahin/f3a22ebca5b52579748dc7d724047c8d to your computer and use it in GitHub Desktop.
Train TF model with MNIST dataset
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import tensorflow_datasets as tfds | |
(ds_train, ds_test), ds_info = tfds.load( | |
'mnist', | |
split=['train', 'test'], | |
shuffle_files=True, | |
as_supervised=True, | |
with_info=True, | |
) | |
def normalize_img(image, label): | |
"""Normalizes images: `uint8` -> `float32`.""" | |
return tf.cast(image, tf.float32) / 255., label | |
ds_train = ds_train.map( | |
normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE) | |
ds_train = ds_train.cache() | |
ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples) | |
ds_train = ds_train.batch(128) | |
ds_train = ds_train.prefetch(tf.data.experimental.AUTOTUNE) | |
ds_test = ds_test.map( | |
normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE) | |
ds_test = ds_test.batch(128) | |
ds_test = ds_test.cache() | |
ds_test = ds_test.prefetch(tf.data.experimental.AUTOTUNE) | |
model = tf.keras.models.Sequential([ | |
tf.keras.layers.Flatten(input_shape=(28, 28)), | |
tf.keras.layers.Dense(128,activation='relu'), | |
tf.keras.layers.Dense(10) | |
]) | |
model.compile( | |
optimizer=tf.keras.optimizers.Adam(0.001), | |
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), | |
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()], | |
) | |
model.fit( | |
ds_train, | |
epochs=6, | |
validation_data=ds_test, | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment