Skip to content

Instantly share code, notes, and snippets.

@himlohiya
Created July 4, 2018 19:06
Show Gist options
  • Save himlohiya/c82d4407fa2921ec7b8d35206576d1b6 to your computer and use it in GitHub Desktop.
Save himlohiya/c82d4407fa2921ec7b8d35206576d1b6 to your computer and use it in GitHub Desktop.
from textblob import TextBlob
# compute sentiment scores (polarity) and labels
sentiment_scores_tb = [round(TextBlob(article).sentiment.polarity, 3) for article in news_df['clean_text']]
sentiment_category_tb = ['positive' if score > 0
else 'negative' if score < 0
else 'neutral'
for score in sentiment_scores_tb]
# sentiment statistics per news category
df = pd.DataFrame([list(news_df['news_category']), sentiment_scores_tb, sentiment_category_tb]).T
df.columns = ['news_category', 'sentiment_score', 'sentiment_category']
df['sentiment_score'] = df.sentiment_score.astype('float')
df.groupby(by=['news_category']).describe()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment