Created
February 19, 2018 10:21
-
-
Save hexgnu/586f32629c2b7624fdfa6723aa256d7a to your computer and use it in GitHub Desktop.
This is a gist made from https://medium.com/@erikhallstrm/hello-world-tensorflow-649b15aed18c showing the differences between CPU and GPU speed with matrix operations
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import matplotlib | |
import matplotlib.pyplot as plt | |
import tensorflow as tf | |
import time | |
def get_times(maximum_time): | |
device_times = { | |
"/gpu:0":[], | |
"/cpu:0":[] | |
} | |
matrix_sizes = range(500,50000,50) | |
for size in matrix_sizes: | |
for device_name in device_times.keys(): | |
print("####### Calculating on the " + device_name + " #######") | |
shape = (size,size) | |
data_type = tf.float16 | |
with tf.device(device_name): | |
r1 = tf.random_uniform(shape=shape, minval=0, maxval=1, dtype=data_type) | |
r2 = tf.random_uniform(shape=shape, minval=0, maxval=1, dtype=data_type) | |
dot_operation = tf.matmul(r2, r1) | |
with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as session: | |
start_time = time.time() | |
result = session.run(dot_operation) | |
time_taken = time.time() - start_time | |
print(result) | |
device_times[device_name].append(time_taken) | |
print(device_times) | |
if time_taken > maximum_time: | |
return device_times, matrix_sizes | |
device_times, matrix_sizes = get_times(1.5) | |
gpu_times = device_times["/gpu:0"] | |
cpu_times = device_times["/cpu:0"] | |
plt.plot(matrix_sizes[:len(gpu_times)], gpu_times, 'o-') | |
plt.plot(matrix_sizes[:len(cpu_times)], cpu_times, 'o-') | |
plt.ylabel('Time') | |
plt.xlabel('Matrix size') | |
plt.show()from __future__ import print_function | |
import matplotlib | |
import matplotlib.pyplot as plt | |
import tensorflow as tf | |
import time | |
def get_times(maximum_time): | |
device_times = { | |
"/gpu:0":[], | |
"/cpu:0":[] | |
} | |
matrix_sizes = range(500,50000,50) | |
for size in matrix_sizes: | |
for device_name in device_times.keys(): | |
print("####### Calculating on the " + device_name + " #######") | |
shape = (size,size) | |
data_type = tf.float16 | |
with tf.device(device_name): | |
r1 = tf.random_uniform(shape=shape, minval=0, maxval=1, dtype=data_type) | |
r2 = tf.random_uniform(shape=shape, minval=0, maxval=1, dtype=data_type) | |
dot_operation = tf.matmul(r2, r1) | |
with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as session: | |
start_time = time.time() | |
result = session.run(dot_operation) | |
time_taken = time.time() - start_time | |
print(result) | |
device_times[device_name].append(time_taken) | |
print(device_times) | |
if time_taken > maximum_time: | |
return device_times, matrix_sizes | |
device_times, matrix_sizes = get_times(1.5) | |
gpu_times = device_times["/gpu:0"] | |
cpu_times = device_times["/cpu:0"] | |
plt.plot(matrix_sizes[:len(gpu_times)], gpu_times, 'o-') | |
plt.plot(matrix_sizes[:len(cpu_times)], cpu_times, 'o-') | |
plt.ylabel('Time') | |
plt.xlabel('Matrix size') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment