Skip to content

Instantly share code, notes, and snippets.

@hexgnu
Created February 19, 2018 10:21
Show Gist options
  • Save hexgnu/586f32629c2b7624fdfa6723aa256d7a to your computer and use it in GitHub Desktop.
Save hexgnu/586f32629c2b7624fdfa6723aa256d7a to your computer and use it in GitHub Desktop.
This is a gist made from https://medium.com/@erikhallstrm/hello-world-tensorflow-649b15aed18c showing the differences between CPU and GPU speed with matrix operations
from __future__ import print_function
import matplotlib
import matplotlib.pyplot as plt
import tensorflow as tf
import time
def get_times(maximum_time):
device_times = {
"/gpu:0":[],
"/cpu:0":[]
}
matrix_sizes = range(500,50000,50)
for size in matrix_sizes:
for device_name in device_times.keys():
print("####### Calculating on the " + device_name + " #######")
shape = (size,size)
data_type = tf.float16
with tf.device(device_name):
r1 = tf.random_uniform(shape=shape, minval=0, maxval=1, dtype=data_type)
r2 = tf.random_uniform(shape=shape, minval=0, maxval=1, dtype=data_type)
dot_operation = tf.matmul(r2, r1)
with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as session:
start_time = time.time()
result = session.run(dot_operation)
time_taken = time.time() - start_time
print(result)
device_times[device_name].append(time_taken)
print(device_times)
if time_taken > maximum_time:
return device_times, matrix_sizes
device_times, matrix_sizes = get_times(1.5)
gpu_times = device_times["/gpu:0"]
cpu_times = device_times["/cpu:0"]
plt.plot(matrix_sizes[:len(gpu_times)], gpu_times, 'o-')
plt.plot(matrix_sizes[:len(cpu_times)], cpu_times, 'o-')
plt.ylabel('Time')
plt.xlabel('Matrix size')
plt.show()from __future__ import print_function
import matplotlib
import matplotlib.pyplot as plt
import tensorflow as tf
import time
def get_times(maximum_time):
device_times = {
"/gpu:0":[],
"/cpu:0":[]
}
matrix_sizes = range(500,50000,50)
for size in matrix_sizes:
for device_name in device_times.keys():
print("####### Calculating on the " + device_name + " #######")
shape = (size,size)
data_type = tf.float16
with tf.device(device_name):
r1 = tf.random_uniform(shape=shape, minval=0, maxval=1, dtype=data_type)
r2 = tf.random_uniform(shape=shape, minval=0, maxval=1, dtype=data_type)
dot_operation = tf.matmul(r2, r1)
with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as session:
start_time = time.time()
result = session.run(dot_operation)
time_taken = time.time() - start_time
print(result)
device_times[device_name].append(time_taken)
print(device_times)
if time_taken > maximum_time:
return device_times, matrix_sizes
device_times, matrix_sizes = get_times(1.5)
gpu_times = device_times["/gpu:0"]
cpu_times = device_times["/cpu:0"]
plt.plot(matrix_sizes[:len(gpu_times)], gpu_times, 'o-')
plt.plot(matrix_sizes[:len(cpu_times)], cpu_times, 'o-')
plt.ylabel('Time')
plt.xlabel('Matrix size')
plt.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment