Skip to content

Instantly share code, notes, and snippets.

@harrylincoln
Created June 3, 2022 16:33
Show Gist options
  • Save harrylincoln/032787e8928afc3e9c1be91ba2603969 to your computer and use it in GitHub Desktop.
Save harrylincoln/032787e8928afc3e9c1be91ba2603969 to your computer and use it in GitHub Desktop.
Predict what baby needs
import time
import audioop
import pyaudio
from pushbullet import Pushbullet
import wave
from tflite_support.task import core
from tflite_support.task import processor
from tflite_support.task import audio
from datetime import datetime
# Initialisation for PyAudio
CHUNK = 1024
FORMAT = pyaudio.paInt16
CHANNELS = 1
RATE = 16000
RECORD_SECONDS = 1
threshold = 200
reading = 0
previousreading = 0
wav_output_filename = 'bub-30-sec-clip.wav'
# PyAudio Object
ppAudio = pyaudio.PyAudio()
# Initialisation for Pushbullet
pb = Pushbullet('your-pushbullet-api-key')
# hangs until script is cancelled
while True:
stream = ppAudio.open(format=FORMAT,
channels=CHANNELS,
rate=RATE,
input=True,
frames_per_buffer=CHUNK)
frames = []
for i in range(0, int(RATE/CHUNK*RECORD_SECONDS)):
data = stream.read(70, exception_on_overflow=False)
frames.append(data)
time.sleep(0.001)
reading = audioop.max(data, 2)
if reading - previousreading > threshold:
print(reading)
pb.push_note("Raspberry Pi",
f'Baby started crying at: {datetime.now().strftime("%H:%M:%S")}')
stream.stop_stream()
stream.close()
pb.push_note(
"Raspberry Pi", f'Camera started at http://192.168.0.84:8123')
thirtySecStream = ppAudio.open(
format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK)
thirtySecStreamFrames = []
# loop through stream and append audio chunks to frame array
for ii in range(0, int((RATE/CHUNK)*30)):
thirtySecData = thirtySecStream.read(
CHUNK, exception_on_overflow=False)
thirtySecStreamFrames.append(thirtySecData)
print("finished recording")
pb.push_note(
"Raspberry Pi", f'Audio captured at {datetime.now().strftime("%H:%M:%S")}')
thirtySecStream.stop_stream()
thirtySecStream.close()
# save the audio frames as .wav file
wavefile = wave.open(wav_output_filename, 'wb')
wavefile.setnchannels(CHANNELS)
wavefile.setsampwidth(ppAudio.get_sample_size(FORMAT))
wavefile.setframerate(RATE)
wavefile.writeframes(b''.join(thirtySecStreamFrames))
wavefile.close()
# TF audio classifer
base_options = core.BaseOptions(
file_name=f'./cries_model.tflite')
classification_options = processor.ClassificationOptions(
max_results=2)
options = audio.AudioClassifierOptions(
base_options=base_options, classification_options=classification_options)
classifier = audio.AudioClassifier.create_from_options(options)
# Run inference
audio_file = audio.TensorAudio.create_from_wav_file(
f'./{wav_output_filename}', classifier.required_input_buffer_size)
audio_result = classifier.classify(audio_file)
print(f'Audio result: {audio_result}')
pb.push_note("Raspberry Pi", f'Predictions: {audio_result}')
previousreading = reading
stream.stop_stream()
stream.close()
# Clearing the resources
stream.stop_stream()
stream.close()
ppAudio.terminate()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment