Skip to content

Instantly share code, notes, and snippets.

@hancush
Created September 16, 2015 17:45
Show Gist options
  • Save hancush/319efdfd172f8f908f54 to your computer and use it in GitHub Desktop.
Save hancush/319efdfd172f8f908f54 to your computer and use it in GitHub Desktop.
import requests
from datetime import datetime
from datetime import timedelta
from pprint import pprint
import tweepy
from config import *
requests.packages.urllib3.disable_warnings()
OAUTH_KEYS = (
ckey, csecret,
atoken, asecret
)
auth = tweepy.OAuthHandler(
ckey, csecret
)
twitter = tweepy.API(auth)
class Rank(object):
"""Score and rank tweets by volume or time period."""
def __init__(self):
self.feed_objects = tweepy.Cursor(
twitter.list_timeline,list_id=211679718,
include_rts=False
)
def sample(self, hours):
"""For time queries, pull tweets from defined period."""
cutoff = (
datetime.utcnow() - timedelta(hours=hours)
).strftime('%b %d %H:%M:%S')
self.time_objects = []
for tweet in self.feed_objects.items(9999):
data = tweet._json # isolate metadata
raw_time = datetime.strptime( # reformat created_at
data['created_at'],
'%a %b %d %H:%M:%S +0000 %Y'
)
time = raw_time.strftime('%b %d %H:%M:%S')
if time > cutoff:
self.time_objects.append(tweet)
else:
break
print cutoff
def score(self, objects):
"""For both time and volume queries, rank tweet sample according
to formula equaling 1.5 times number of retweets plus
number of favorites, all divided by half number of followers."""
scores = {}
for tweet in objects:
data = tweet._json # isolate metadata
score = ((1.5*data['retweet_count'] + data['favorite_count'])
/ (data['user']['followers_count'] / 2))*1000
scores[round(score, 2)] = u"{0} at {1}: {2}".format(
data['user']['screen_name'], data['created_at'],
tweet.text
)
pprint(sorted(scores.items(), reverse=True)[:10])
scores.clear()
def rank_vol(self, volume):
"""Sample number of tweets defined by volume argument."""
self.score(self.feed_objects.items(volume))
def rank_time(self, hours):
"""Sample tweets from time period defined by hours argument."""
self.sample(hours)
self.score(self.time_objects)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment