Skip to content

Instantly share code, notes, and snippets.

@guenp
Forked from colinclement/mog.py
Created July 26, 2016 21:20
Show Gist options
  • Save guenp/a2e6d99f0b934288589b47cb4baa01d4 to your computer and use it in GitHub Desktop.
Save guenp/a2e6d99f0b934288589b47cb4baa01d4 to your computer and use it in GitHub Desktop.
Fit data like spectra or something to a sum of gaussians.
"""
mog.py
Mixture of gaussians. For fitting data that looks like Gaussians.
author: Colin Clement
date: 2016-2-29
"""
import numpy as np
from scipy.optimize import leastsq
class Mog(object):
def __init__(self, L, N_g, params = None,
spacing = None, **kwargs):
"""
input:
L: (int) length of data array
N_g: (int) number of gaussians in model
(optional)
params: (N_g, 3)-shaped array for initial parameters
2nd index is [amplitude, mean, standard deviation]
spacing: (float) if you want the space between points to not
be 1
"""
self.L = L
self.N_g = N_g
self.d = spacing if spacing is not None else 1.
self.x = np.arange(self.L)
self.mixture = np.zeros(L)
self.d_params = np.zeros((self.L, self.N_g*3))
self.params = params
if self.params is None:
#Initialize A, x, sx to some random values
means = np.cumsum(np.random.rand(self.N_g))
self.params = np.vstack([np.random.rand(self.N_g)/self.d,
np.random.rand(self.N_g)*self.L*self.d,
self.d*3*(np.random.rand(self.N_g)+1)]).T
self.params[:,0] /= self.params[:,0].sum()
self.logparams = self.getlogp(self.params)
self.update(self.logparams)
def gaussian(self, params):
"""
Gaussians model. Log parameters for amplitude and
standard deviation enforce positivity
input:
params: (N_g, 3)-shaped array
"""
#Log params for a, sx to enforce positivity
x, sx = params[:,1], np.exp(params[:,2])
Dx = self.x[:,None] - x[None,:]
g = np.exp(- Dx**2/(2*sx[None,:]**2))
g = np.exp(params[:,0])[None,:]*g/np.sqrt(2*np.pi*sx[None,:]**2)
return g.sum(1).ravel()
def d_gaussian(self, params):
"""
Gaussians model. Log parameters for amplitude and
standard deviation enforce positivity
input:
params: (N_g, 3)-shaped array
"""
a = np.exp(params[:,0])
x, sx = params[:,1], np.exp(params[:,2])
sx2 = sx*sx
Dx = self.x[:,None]-x[None,:]
Dx2 = Dx*Dx
g = np.exp(- Dx2/(2*sx2[None,:]))
g = g*(a/np.sqrt(2*np.pi*sx2))[None,:]
da = g #a = exp(alpha)
dx = g*Dx/sx[None,:]**2
dsx = g*(2*Dx2-sx2[None,:])/(2*sx2[None,:])
for i, d in enumerate([da, dx, dsx]):
self.d_params[:,i::3] = d.reshape(-1, self.N_g)
return self.d_params
def getp(self, logp):
"""
Convert log parameters to parameters
"""
a, x, sx = np.exp(logp[:,0]), logp[:,1], np.exp(logp[:,2])
return np.vstack([a, x, sx]).T
def getlogp(self, p):
"""
Convert parameters to log parameters
"""
a, x, sx = np.log(p[:,0]), p[:,1], np.log(p[:,2])
return np.vstack([a, x, sx]).T
def update(self, params):
"""
update state of self.mixture with params
"""
self.mixture = self.gaussian(params.reshape(self.N_g, -1))
def residual(self, params, data):
"""
Compute difference between model and data.
input:
params: (N_g, 3)-shaped array
data: (L)-shaped array of data
returns:
residuals : (L)-shaped array
"""
self.update(params)
return self.mixture - data.ravel()
def jacobian(self, params, data):
"""
Compute jacobian of the residuals w.r.t. model parameters.
Does not actually depend on data, but leastsq likes consistent
function signatures.
input:
params: (N_g, 3)-shaped array
data: (L)-shaped array of data
returns:
jacobian: (L, 3*N_g)-shaped array
"""
return self.d_gaussian(params.reshape(self.N_g, -1))
def fit(self, data, p0 = None, maxfev = 200):
"""
Fit a Mog model to data by minimizing squared error.
input:
data: (L)-shaped array
(optional)
p0: (N_g,3)-shaped array of parameter initial guesses.
maxfev: (int) limit on leastsq so you don't wait too long
returns:
best fit parameters (N_g, 3)-shaped array.
NOTE:
self.opt stores full output of leastsq. Examine in case of
weird behavior.
"""
p0 = p0 if p0 is not None else self.params
logp0 = self.getlogp(p0)
self.opt = leastsq(self.residual, logp0.ravel(),
Dfun = self.jacobian, args = (data,),
full_output = 1, maxfev = maxfev)
self.logparams = self.opt[0].reshape(self.N_g, -1)
self.params = self.getp(self.logparams)
return self.params
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment